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ABSTRACT 
Graph neural networks (GNNs) have seen widespread usage across 
multiple real-world applications, yet in transductive learning, they 
still face challenges in accuracy, efciency, and scalability, due to 
the extensive number of trainable parameters in the embedding 
table and the paradigm of stacking neighborhood aggregations. 
This paper presents a novel model called xGCN for large-scale net-

work embedding, which is a practical solution for link predictions. 
xGCN addresses these issues by encoding graph-structure data in 
an extreme convolutional manner, and has the potential to push 
the performance of network embedding-based link predictions to a 
new record. Specifcally, instead of assigning each node with a di-
rectly learnable embedding vector, xGCN regards node embeddings 
as static features. It uses a propagation operation to smooth node 
embeddings and relies on a Refnement neural Network (RefNet) to 
transform the coarse embeddings derived from the unsupervised 
propagation into new ones that optimize a training objective. The 
output of RefNet, which are well-refned embeddings, will replace 
the original node embeddings. This process is repeated iteratively 
until the model converges to a satisfying status. Experiments on 
three social network datasets with link prediction tasks show that 
xGCN not only achieves the best accuracy compared with a series 
of competitive baselines but also is highly efcient and scalable. 
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1 INTRODUCTION 
Graph structure data, such as social networks, knowledge graphs, 
and molecular graphs, is prevalent in modern life. Graph embed-

ding [8] has been shown to be an efective technique for repre-
senting graph structure data by encoding each node with a low-

dimensional vector. In recent years, research interests have shifted 
from shallow graph embeddings [9, 21, 23] towards graph neural 
networks (GNNs) [29] due to their superior ability to explicitly en-

code useful patterns from the high-order neighborhood [26, 27]. 
In this paper, we examine the case of embedding social networks, 
where a user’s neighborhood on the graph plays a crucial role in 
representing the user, and its application in social link prediction. 

In the inductive graph representation learning tasks [10], the 
nodes are associated with attributes, and all trainable parameters 
come from the graph neural networks: Θ = {Θ� }. However, in 
classical network embedding tasks, each node is associated with a �-
dimensional embedding vector which is trainable, so the parameter 
set becomes Θ = {Θ� , Θ� }. Θ� is called the embedding table and 
denoted by E hereinafter. Mainstream methods of GNNs usually 
follow a general paradigm: aggregating messages from neighbors, 
performing some transformation, stacking these two steps multiple 
times to acquire high-order neighborhood information, and learn-

ing all the parameters by stochastic gradient descent (SGD). Potential 
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Figure 1: An overview of the key components in xGCN 

drawbacks of this paradigm are three-fold: (1) The neighborhood 
size increases exponentially with the hop distance, which can easily 
cause the over-smoothness problem and scalability issue; (2) For a 
graph with � nodes, the embedding table E alone has � (��) learn-

able parameters, which makes GNNs hard to parallelize (because 
the communication cost will dominate the computational cost); (3) 
Parameters in Θ� and in Θ� have diferent properties (e.g., Θ� 
is dense while Θ� is sparse), however, both of them are updated 
by gradient back-propagation in a unifed framework. It together 
with the existence of gradient vanishing and gradient explosion 
issues, may lead to sub-optimal performance in both the training 
efciency and fnal accuracy of GNNs. Thus, in some prior studies, 
researchers fnd that removing Θ� and retaining only Θ� can yield 
better performance [12] for link predictions. 

In this paper, we propose a brand-new GNN named xGCN, which 
is short for extreme graph convolutional network, for social link pre-
dictions. Our motivations come from a series of prior studies: (1) 
RandNE [34] demonstrates that the network structure information 
can be preserved with iteratively embedding propagation without 
any trainable parameters; (2) LightGCN [12] indicates that in the 
embedding propagation framework, when the node embedding is 
trainable with some supervised labels such as link predictions, the 
quality of node embeddings can further be improved; (3) [6, 15] 
demonstrate that the Feed Forward Network (FFN) plays a key role 
in memorizing knowledge and performing essential information 
transformation in the Transformer architecture. Thus, we aban-

don the classical paradigm of GNN, which is denoted as [neighbors 
aggregation, transformation, stacking, SGD(Θ� , Θ� )] for simplic-

ity. Instead, we propose a new paradigm of iterative [Propagation, 
Refnement, SGD(Θ� ), Refresh], which integrates the motivations 
of message propagation, controllable embeddings, and message 
distillation. An overview of this process is illustrated in Figure 1. 

Similar to RandNE, the node embeddings in xGCN are not train-

able, thus, we can get rid of the � (��) embedding table and the 
model is feasible for parallelization. We frst perform a step of em-

bedding propagation to encode the network structure information 
into node embeddings (Figure 1-(i)). We argue that as long as a 
node embedding carries a certain amount of graph structure infor-

mation, an FFN module can perform information transformation 

so that node embeddings are refned to a better status (Figure 1-
(ii)). Trainable parameters are located only in the FFN module, and 
they are updated by SGD. After the FFN is optimized, we refresh 
the embedding table with the output of FFN (Figure 1-(iii)). In this 
way, the embedding table gets updated in one shot rather than 
in a slow, iterative manner with SGD (such as the mechanism in 
LightGCN [12]). 

We conduct link prediction experiments on three real-world 
social network datasets. xGCN consistently outperforms a set of 
competitive baselines such as GAMLP and PPRGo. This demon-

strates that the new GNN framework can learn high-quality embed-

dings for various social networks. Besides the accuracy advantage, 
we also conduct training efciency studies and verify that xGCN 
converges much faster than classical GNN models. At last, to test 
the scalability, we train xGCN on a 100 million Xbox graph with a 
single machine, using only 92 GB RAM and 11 hours to converge, 
and it can outperform node2vec by a large margin. To summarize, 

• We propose a novel model xGCN for social link prediction, which 
gets rid of the traditional GNN paradigm and achieves better ac-
curacy, efciency, and scalability with less trainable parameters. 

• We design three core components, including propagation, the 
refnement network, and a refresh control mechanism, to make 
xGCN efective and robust across diferent social networks. 

• We conduct experiments on three datasets to demonstrate the 
superiority of xGCN on efectiveness, efciency, and scalability. 
Our code is released at https://github.com/CGCL-codes/xGCN. 

2 METHODOLOGIES 

2.1 Task Defnition 
Graph embedding for link predictions. Given a graph G = 
(V, E) containing |V| = � nodes and |E | = � edges. The edges 
of G can also be formulated as an adjacency matrix A ∈ R� ×� 

, 
with A�� = 1 indicating an edge from node � to node � . A diagonal Í� 
matrix D stores the degree of each node: D�� = 

�=1 A�� . Our 
goal is to learn an embedding model � which can represent each 
node � ∈ V with a �-dimensional embedding vector x� = � (� |G), 
x� ∈ R� 

, so that the occurrence probability of an edge between two 
� 

nodes � and � can be measured by their dot-product �̂�� = x� x� . 
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2.2 The Framework of xGCN 
Mainstream graph embedding models usually allocate a learnable 
embedding table E ∈ R� ×� 

. It together with some additional graph 
neural network parameters Θ� , constitutes the trainable parameter 
set of � , i.e., Θ = {Θ� , Θ� }. However, when the size of the graph 
is large, which is the common case for real-world social networks, 
the trainable embedding table E becomes the bottleneck causing 
training efciency and scalability problems. In xGCN, we propose a 
totally diferent approach, in which there are three key operations, 
including embedding propagation, embedding refnement, and em-
bedding refresh. These three operations are executed in a chain and 
will be repeated for multiple iterations until convergence, with the 
fundamental goal of learning graph-structure-aware node embed-

dings. In contrast to existing GNNs, the embedding table in xGCN 
is not the trainable parameter, and all trainable parameters lie in a 
refnement neural network, i.e., Θ = {Θ� }. To distinguish from a 
trainable embedding table, we use Z to denote the base embedding 
table of xGCN. We initialize Z randomly and then perform a graph 
convolutional operation to smooth nearby nodes’ embedding as 
well as propagate node information along the graph structure. Next, 
we train a Refnement neural Network (denoted as RefNet) to trans-

form the current embeddings into new embeddings X, with the 
goal to preserve useful signals and flter out noises. The parameters 
of RefNet will be updated by normal gradient descent methods 
such as SGD. Third, when the RefNet is well trained, which means 
that it can output higher quality embeddings, we replace Z with X, 
which we refer to as the embedding refresh operation. These three 
operations are repeated with multiple iterations until the model 
converges to a satisfying status. The overview of xGCN is illus-

trated in Figure 1 and Algorithm 1. Details for each key operation 
are as follows. 

2.3 Key Components 
2.3.1 Embedding propagation. We assume that the unique in-

formation for each node is stored in the corresponding embedding 
vector in Z. At the very beginning, Z is initialized as a random 
matrix. Since the local neighborhood is important to depict a node, 
we aggregate neighbors to derive the node’s new representation, 
so that the network structure information is strengthened: 

E ← PZ (1) 

where P is the propagation matrix of the graph, it stands for the 
direction of information to be smoothed and can have diferent 
implementations, such as the normalized adjacency matrix Ã of 
G (i.e., information is propagated to the frst order neighborhood): 
Ã = D−1/2AD−1/2

, or the top-� PPR neighbors matrix �̃ 
(i.e., prop-

agate to the most infuential neighbors for the center node), or 
multiplication of normalized adjacency matrix: Ã 2 

(i.e., propagate 
to the second order neighborhood). We empirically fnd that using 
Ã can achieve the best performance. 

2.3.2 RefNet learning. Embedding propagation is an unsuper-

vised operation. Although it can encode graph structure informa-

tion, unfortunately, it also brings a lot of noise. To extract use-

ful information and flter out noise, we design a RefNet compo-

nent to learn to transform relatively lower-quality embeddings into 
ones that better encode the graph structure. RefNet is composed 

of a Feed-Forward Network (FFN) and a Scaling Neural Network 
(SNN). The last hidden layer of FFN does not include an activa-
tion function, while the rest of the hidden layers use Tanh as an 
activation function. A design principle for FFN is that the middle 
layers need a signifcantly larger dimension than the input vec-
tor. E.g., a 2-layer FFN with an input embedding size being 64 is 
[������ (64, 1024),���ℎ, ������ (1024, 64)], where ������ indicates 
multiplying a parameter matrix and then adding a bias vector. The 
SNN is a smaller neural network that outputs a single scalar be-
tween (0, 1), which shapes the magnitude of FFN’s output vectors 
to a proper level. We empirically fnd that the normalization of 
the last layer of FFN is important and SNN performs much better 
than others such as Tanh and L2-normalization. The SNN’s struc-

ture is [������ (64, 32),���ℎ, ������ (32, 1), �������]. The output of 
RefNet is: 

X = �� � (E) · ��� (E) (2) 

We adopt the pair-wise ranking loss function – BPR [12] – to opti-
mize the parameters in the RefNet: ∑ 

1 L = �� � ����� (��,�̂ − ��,� ) (3)|E | ⟨�,� ⟩∈E,⟨�,�̂⟩∉E 

where ��,� is the scorer to estimate edge probability according to the 
node embeddings. Without loss of generality, in this paper, we use 

� 
dot product, ��,� = x� x� , as the scorer, but it can be easily extended 
to other types of scorers such as Logistic Regression or Deep Neural 
Networks. For each positive edge (�, �) ∈ E, we randomly sample a 
pair of nodes (�, �̂) which does not exist in E as a negative instance. 

2.3.3 Embedding refresh. Note that the embedding table E is not 
trainable during the learning process of RefNet. After the RefNet is 
well trained, the resulting embeddings can represent a better state 
of the node representations, so we replace the embedding table 
with RefNet’s output: 

Z ← X (4) 

2.3.4 Training strategy. During the training of xGCN, the three 
operations – embedding propagation, RefNet learning, and embed-

ding refresh – are repeatedly executed. One challenge is how to 
coordinate between RefNet learning and embedding refresh. Since 
these two components are not optimized with derivable parameters 
under an end-to-end framework, if the refresh operation is per-

formed at an improper time, RefNet’s optimization may be severely 
impacted (see experiments in Section 3.5, setting K=0 and K=Inf, 
and Section 3.6). To address this challenge, we design a simple yet 
efective refresh controlling mechanism: during a warm-up stage, 
the representation refresh operation and propagation operation are 
performed after the RefNet is updated for � epochs; there are in 
total � times refresh/propagation operations in the warm-up stage, 
where both � and � are hyper-parameters; after the warm-up stage, 
embeddings will not be refreshed at a regular frequency; instead, 
we use the validation set to detect the best epoch of embeddings 
up to now. If the RefNet can no longer improve the metrics on 
the validation set for ���� epochs, which means the refnement for 
the current input embedding table is converged, we refresh the 
embedding table with the current best state of the embedding table, 
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and then perform propagation, with the hope that RefNet can con-

tinue to refne the embeddings at a new start. The detailed training 
algorithm is shown in Algorithm 1. 

Algorithm 1 xGCN Training Process 

Input: Graph G = (V, E), Hyper-parameters � , � , ���� 
Output: Node embeddings X 

1: Randomly initialize E and RefNet. 
2: Do Propagation according to Eq.(1) 
3: ����� �� � ���ℎ ����� ← 0 
4: for ����ℎ = 1 to ���_����ℎ do 
5: update RefNet with SGD to minimize Eq.(3) 
6: if ����� �� � ���ℎ ����� < � then 
7: /* In the warm-up stage */ 
8: if epoch % T == 0 then 
9: Do Refresh according to Eq.(4) 

10: Do Propagation according to Eq.(1) 
11: ����� �� � ���ℎ ����� += 1 
12: end if 
13: else 
14: if no improvement for ���� epochs then 
15: Do Refresh according to Eq.(4) 
16: Do Propagation according to Eq.(1) 
17: end if 
18: end if 
19: end for 

2.4 Discussions 
xGCN is a new style of GNN, which includes two decoupled steps: 
step-1 is to conduct message propagation, so the graph-structure 
signals can be distributed to node embeddings. There are two pur-

poses designed for this step: providing graph signals and reducing 
repeated subgraph computation cost. Step-2 is designed for infor-

mation refnement (RefNet) since both useful and useless signals 
will be passed in step-1. Prior works such as [1] reveal that the bot-
tleneck of message-passing style GNNs lies in the over-squashing 
issues, especially for long-range dependencies, which motivates us 
to leverage a more powerful refnement network (RefNet) to distill 
useful information from the squashed embedding. 

Classical models allocate a learnable embedding vector for each 
node, which will result in massive learnable parameters (for exam-

ple, 100 million nodes with 32-dimensional embedding vectors). Too 
many learnable parameters usually make models hard to optimize, 
prone to overftting, and poor in generalization. xGCN puts all the 
learnable parameters in RefNet, which contains fewer parameters 
than the embedding table; meanwhile, RefNet is shared by all the 
nodes, and its parameters do not belong to sparse parameters, so 
the generalization ability is better. 

2.5 Theoretical Analysis 
The framework and optimization of xGCN can be formulated and 
explained by the EM algorithm [20]. For notation simplicity, let 
� (� ) denote the �-th data sample (which represents a pair of nodes) 
and � (� ) denote the latent variables associated with � (� ) . Let � (�)
denote the learned parameters at time step � . The EM algorithm 
takes the following form: 

Table 1: Basic statistics of datasets 

# nodes # edges ave. degree density 

Pokec 1,632,803 27,560,308 16.9 2.06�−5 
LiveJournal 4,847,571 62,094,395 12.8 5.28�−6 
Xbox-3m 3,000,000 80,194,576 26.7 1.78�−5 

E-step: Given the estimated parameter � (�) at iteration � , compute 
the expectation of latent variables: 

� (� (� ) ) = � (� (� ) |� (� ) ; � (�)) (5) 

M-step: Update � to maximize the expected likelihood of the ob-
served data (which is also called the �-function): 

� (� |� (�)) = arg max E� (� ) ∼� (� (� ) ) [��� � (� (� ) , � (� ) |� )] (6) 
� 

The M-step is represented by Line 5 in Algorithm 1 which opti-
mizes model parameters to maximize a value function, while the 
E-step is represented by Lines 6 to 18 with an implementation trick 
- the probability mass function � (� (� ) ) follows a sharp distribution, 
allowing us to fnd the maximum value instead of calculating expec-

tations. Detailed theoretical analysis can be found in Appendix A.1. 
As a result, both the feasibility of the model and convergence of 
the optimizer can be guaranteed by leveraging the theory of the 
EM algorithm. 

3 EXPERIMENTS 

3.1 Experiment Setup 
3.1.1 Datasets. We use two biggest social network datasets from 
SNAP

1
, Pokec and LiveJournal, and one industrial dataset, Xbox, 

which is a gaming social network provided by Xbox Gaming Corp. 
The complete Xbox dataset contains about 100 million nodes, for a 
comprehensive comparison with baselines, we sample a medium-

size subgraph including 3 million nodes and denote it as Xbox-3m. 
Basic statistics are listed in Table 1. We evaluate model performance 
on the node recommendation task, with details on task settings 
introduced in Appendix A.2. 

3.1.2 Evaluation metrics. Two widely used evaluation metrics 
are adopted - Recall and Normalized Discounted Cumulative Gain 
(NDCG) [12, 33]. Recall@� measures the ability to retrieve positive 
target nodes among top � recommendations, which is defned as 
the number of retrieved positive nodes divided by the number of 
total ground-truth positive nodes. We average all users’ individ-

ual Recall@� as the overall Recall@� indicator. NDCG measures 
how well positive target nodes can be ranked to the top positions 
compared with an ideal ranking order. In the experiments, for con-

ciseness, we report Recall@50, Recall@100, and NDCG@100, which 
are abbreviated as R@50, R@100, and N@100, respectively. 

3.1.3 Baselines. We compare xGCN against a variety of methods, 
including pure propagation method RandNE [34]; shallow graph 
embedding methods: node2vec [9], SimpleX [17], and UltraGCN 
[18] (though named after "GCN", it does not perform graph convolu-

tion operation explicitly); competitive GNNs: GraphSAGE [10], GAT 

1
http://snap.stanford.edu/data/index.html 
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[25] and GIN [30], LightGCN [12], SGC [28], S2
GC [35], SIGN [7], 

GBP [3], GAMLP [32], and PPRGo [2]. Detailed hyper-parameters 
can be found in Appendix A.3. 

3.2 Overall Performance 
The overall accuracy performance comparison is summarized in 
Table 2. For all the datasets, we repeat each model 5 times and report 
the average scores with standard deviations. We have the following 
observations: (1) On all three datasets, xGCN outperforms baseline 
models by a large margin. E.g., when compared with the best base-
line in terms of Recall@100, xGCN achieves a performance gain of 
15.34% on Pokec, 16.20% on LiveJournal, and 48.18% on Xbox-3m. 
(2) GNN methods, such as GraphSAGE, GAT, and GIN, are generally 
better than shallow graph embedding methods, which is in line 
with the intuition. GNNs explicitly encode meaningful information 
from the neighborhood to strengthen a node’s representation, in 
theory, they have stronger expressiveness than shallow embedding 
methods. (3) In most cases, simplifed GNNs (such as LightGCN and 
PPRGo) outperform non-simplifed ones (GraphSAGE, GAT, and 
GIN). On Pokec and LiveJournal, the performance of non-simplifed 
GNNs is signifcantly much worse than PPRGo, even when their 
base embedding tables are warmed-up with a well-trained node2vec 
model, while PPRGo is trained from scratch. These observations 
are consistent with some related works [12, 28]. In the scenario of 
node recommendations, embedding transformation, and nonlinear 
activation may bring difculty for model training, and thus, de-
grade models’ performance. Diferent from GraphSAGE, GAT, and 
GIN, xGCN moves embedding transformation and nonlinear acti-
vation from graph convolutions to a refnement network, leaving 
the message propagation process parameter-free. 

To investigate whether xGCN exhibits unfairness, such as its high 
overall accuracy being achieved by diminishing the performance 
of some nodes to greatly enhance the performance of others, we 
plot the accuracy by group in Figure 2. We compare node2vec and 
PPRGo since node2vec is the most classical node embedding method 
and PPRGo is the best baseline method on Pokec and LiveJournal. 
We sort nodes by their degree in ascending order and then split 
nodes into 10 percentiles. E.g., 0 on the x-axis in Figure 2 means 
the nodes whose degree belongs to the 0 − 10% percentile. We can 
observe that xGCN consistently outperforms baselines in all the 
node groups, which demonstrates that the superiority of xGCN 
comes from its true power rather than playing some distribution 
tricks. Another interesting observation is that nodes with lower 
degrees have higher accuracy values. This phenomenon indicates 
that users’ earlier social relationships are easier to predict. 

3.3 Training Efciency 
Next, we examine the training efciency of xGCN, compared with 
LightGCN and PPRGo. All models are run with 100 epochs using 
the same hardware confguration: GPU is Tesla P100, 16GB and CPU 
is Intel Xeon CPU E5-2690 v4 @ 2.60GHz. For each epoch, we print 
the Recall@100 score on the validation set. Figure 3 depicts the 
training curves of the three models. On all three datasets, xGCN 
uses far less time to converge to a satisfying status. Since xGCN 
is much more lightweight than LightGCN and PPRGo, training 
one epoch of xGCN takes less time than the other two GNNs. For 
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Figure 2: Group-level performance of xGCN, PPRGo, and 
node2vec. Nodes are evenly split into 10 groups according to 
the degree in ascending order. 
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Figure 3: Training efciency study. The curves are Re-
call@100 scores on the validation set. 

example, on the Xbox-3m dataset, training one epoch costs around 
50 seconds for xGCN, 2000 seconds for LightGCN, and 1800 seconds 
for PPRGo. Besides, on Pokec and LiveJournal, xGCN converges 
with fewer epochs, thus, the total training time of xGCN is much 
less than PPRGo and LightGCN. On the Xbox-3m dataset, although 
xGCN takes a few more epochs to converge, the absolute time cost 
of xGCN is still much less than the other two models. 

3.4 Large-scale Graph with 100 Million Nodes 
We test the scalability of xGCN with a real-world Xbox social net-

work that contains 100 million nodes. Our goal is to explore how 
we can learn large-scale graph embeddings easily with a single 
normal machine, so in this section, all the models in comparison 
are run on a CPU device with large RAM. Due to the time limit, we 
allow all the models to run for at most 72 hours. If a model does not 
converge after 72 hours, we stop it and use its best model snapshot 
to perform an evaluation. We tune a few key parameters such as 
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Table 2: Overall performance comparison of diferent models on three datasets. Numbers are in percentage (%). 

Pokec LiveJournal Xbox-3m 

R@50 R@100 N@100 R@50 R@100 N@100 R@50 R@100 N@100 

RandNE [34] 1.04±0.05 1.69±0.08 0.44±0.02 0.30±0.02 0.37±0.02 0.14±0.01 0.60±0.01 0.76±0.02 0.26±0.01 

node2vec [9] 4.51±0.06 7.45±0.10 1.74±0.04 12.89±0.25 16.93±0.29 5.26±0.09 8.52±0.23 10.56±0.26 3.39±0.10 

UltraGCN [18] 5.62±0.42 7.74±0.49 2.16±0.15 11.14±0.65 14.27±0.74 4.39±0.26 2.30±0.13 3.04±0.15 0.89±0.05 

SimpleX [17] 1.01±0.06 1.53±0.10 0.44±0.03 6.82±0.32 8.70±0.34 2.64±0.12 0.77±0.01 1.01±0.06 0.30±0.01 

GraphSAGE [10] 7.22±0.11 10.87±0.16 2.76±0.05 19.84±0.25 24.63±0.30 8.17±0.08 10.26±0.39 12.39±0.49 4.14±0.18 

GAT [25] 4.65±0.27 7.60±0.35 1.72±0.08 17.59±0.44 22.66±0.47 6.87±0.18 5.17±0.17 7.04±0.16 1.83±0.05 

GIN [30] 7.62±0.13 11.24±0.18 2.92±0.04 21.44±0.20 25.79±0.18 8.99±0.10 10.24±0.08 12.00±0.11 4.38±0.04 

SGC [28] 6.01±0.00 10.24±0.00 2.18±0.00 12.43±0.10 16.52±0.10 473±0.07 5.18±0.04 7.20±0.05 2.03±0.02 

S
2
GC [35] 7.15±0.00 10.72±0.00 2.59±0.00 14.67±0.34 20.30±0.26 4.82±0.13 7.64±0.07 10.21±0.06 2.89±0.03 

SIGN [7] 5.58±0.76 9.38±0.99 2.00±0.24 15.84±0.40 19.09±0.55 6.55±0.14 7.64±0.06 9.12±0.11 3.25±0.04 

GBP [3] 9.24±0.15 13.23±0.20 3.49±0.04 22.65±0.32 27.36±0.27 9.55±0.09 12.07±0.24 14.30±0.26 4.92±0.11 

GAMLP [32] 12.50±0.25 17.22±0.33 4.58±0.11 24.77±0.39 30.01±0.35 10.22±0.19 11.39±0.26 13.48±0.26 4.68±0.12 

LightGCN [12] 12.26±0.63 17.55±0.72 4.78±0.23 21.74±0.35 27.49±0.39 8.26±0.14 5.91±0.11 7.98±0.11 2.21±0.05 

PPRGo [2] 13.99±0.19 18.58±0.20 5.30±0.08 25.48±0.58 31.30±0.59 9.54±0.16 10.64±0.08 12.27±0.09 4.22±0.04 

xGCN [ours] 16.07±0.21 21.43±0.24 6.25±0.06 31.44±0.09 36.37±0.14 13.41±0.09 18.52±0.18 21.19±0.09 7.61±0.09 

Improv. +14.87% +15.34% +17.92% +23.39% +16.20% +31.21% +53.43% +48.18% +54.67% 

Table 3: Results of training on 100m Xbox social graph 

R@100 N@100 #. param Training Time 

RandNE 0.18 0.09 0 16 minutes 
node2vec 2.50 0.54 3.2�9 72 hours 
LightGCN 0.42 0.14 3.2�9 72 hours 
PPRGo 3.68 1.19 3.2�9 72 hours 
GraphSAGE 4.54 1.43 3.2�9 + 1�4 72 + 30 hours 
GBP 4.54 1.48 3.2�9 + 6.7�4 72 + 15 hours 
xGCN 6.10 1.85 1.1�6 11 hours 

the learning rate and GCN layers so that each model can achieve 
its best performance with the hard 72 hours time constraint. For 
node2vec, the traditional implementations cannot scale to large 
graphs due to the existence of the transition probability matrix. 
To address issues, we especially implement a highly efcient and 
scalable version of node2vec by ourselves. Technical details can 
be referred to in Appendix A.4. Now one epoch of node2vec costs 
about 24 hours. We fnd that directly training GraphSAGE with each 
node assigning a learnable embedding vector will lead to very poor 
performance. Thus, we use node2vec’s results to initialize Graph-

SAGE’s embedding table, and we denote the Total Training Time of 
GraphSAGE as 72+30 hours, with 72 hours of node2vec training and 
30 hours of GraphSAGE training. For xGCN, one epoch costs about 
51 minutes, and it converges at the 9th epoch, so the total training 
time is less than 11 hours (because we spare some tolerance epochs 
before early stopping). The CPU memory consumption of xGCN is 
92 GB. The accuracy comparison is shown in Table 3, from which 
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Figure 4: Comparisons of learning curves of xGCN with dif-
ferent propagation times. Each red point signifes the epoch 
time at which propagation is initiated. 

we can see that xGCN uses less time than all the learnable baselines 
and achieves much better accuracy performance. 

3.5 Ablation Study 
We perform ablation studies to justify the necessity of some key 
components: (1) the iterative refresh-then-propagate training frame-

work, (2) the scaling neural network (SNN) in the RefNet, and (3) the 
warm-up training stage. The results are reported in Table 4 (due 
to the space limitation, we move the results on the Pokec dataset 
to the appendix), where we can have the following conclusions: 
(i) shows that purely propagating on the randomly initialized em-

beddings is hard to encode any useful information. (ii.a) and (ii.b) 
indicate that RefNet has a certain ability to transform relatively 
low-quality embeddings into more representative ones, however, 
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Table 4: Ablation studies for xGCN. Notation explanations: 
(i) Pure-prop: only do propagation for multiple times. (ii.a) 
Random-RefNet: randomly initialize the embedding table, 
then learn RefNet, do not perform refresh or do propagation. 
(ii.b) Prop-RefNet: frst do propagation (based on (i)), then 
learn RefNet. (ii.c) Prop-RefNet-refresh: frst do propagation 
(based on (i)), then learn RefNet, perform refresh but do no 
more propagation. (iii.a) Full K=0: set � = 0, which means re-
moving the warm-up training stage. (iii.b) Full K=Inf: set 
� = ∞, which means the training process only contains 
the warm-up stage. Group (iv) analyses the efectiveness of 
SSN. For example, "2L-FFN-SSN" denotes the RefNet is com-
posed of a 2-layer FFN and an SSN. "Res" means replacing 
the SSN with a common residual connection. "3L-FFN-SSN 
(Full)" equals to the fnal xGCN. 

LiveJournal Xbox-3m 

R@50 R@100 N@100 R@50 R@100 N@100 

(i) Pure-prop 0.13 0.26 0.05 0.04 0.06 0.01 

(ii.a) Random-RefNet 0.19 0.32 0.07 0.59 0.73 0.21 

(ii.b) Prop-RefNet 24.28 28.29 9.61 7.11 9.16 2.37 

(ii.c) Prop-RefNet-refresh 24.36 28.35 9.45 9.32 10.53 3.70 

(iii.a) Full K=0 29.07 32.47 12.32 14.55 16.65 5.95 

(iii.b) Full K=Inf 28.96 34.61 12.24 18.05 20.81 7.29 

(iv.a) 2L-FFN-Res 23.46 29.96 7.55 13.86 17.77 4.89 

(iv.b) 2L-FFN-SSN 24.65 30.05 8.75 16.88 19.93 6.10 

(iv.c) 3L-FFN-Res 18.93 24.17 6.47 9.95 13.67 3.30 

(iv.d) 3L-FFN-SSN (Full) 31.44 36.37 13.41 18.52 21.19 7.61 

only learning a RefNet is still far from achieving satisfying perfor-

mance. The comparison of (iv.d) and (ii.c) suggests that without the 
propagation operation, the iterative refresh-then-training process 
cannot continuously improve the quality of the embeddings. (iii.a) 
and (iii.b) indicate the necessity of the two-stage training strategy 
as well as the refresh controlling mechanism. (iv.a) - (iv.d) demon-

strate the necessity of the SNN, when it is replaced with a classical 
ResNet [11], the performance is greatly afected, and the impact of 
SNN on the 3-layer FFN is greater than it on the 2-layer FFN. 

To gain a clearer understanding of the benefts of propagation 
for xGCN, we fxed the maximum propagation times to 1, 3, 5, and 
10 and plotted the accuracy curves on the validation set in Figure 4. 
E.g., prop3 means that when the propagation time reaches 3, we stop 
further propagation of xGCN and only train the RefNet in the sub-

sequent epochs. full indicates a normal setting of xGCN. Each red 
point in the fgure indicates an epoch time when propagation is trig-
gered. Figure 4 demonstrates that propagation is critical for xGCN 
to converge to a satisfying state. Inadequate times of propagation 
lead to poor performance. On the other hand, the required maxi-

mum number of propagations is not large, i.e., usually, 10 is close 
to the best performance. Propagation and RefNet learning should 
be placed under the iterative learning framework, as a counter-

example, in Figure 4, the transverse line RandNE(10)+RefNet means 
that we directly propagate the embedding for 10 times and then 
start training the RefNet until it converges. Its performance is much 
worse than the corresponding prop10 version, which indicates the 
necessity of iterative update of propagation and RefNet. 
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Figure 5: Hyper-parameter study on � and � 

Table 5: Hyper-parameter studies: comparisons of FFN struc-
tures and graph propagation methods 

LiveJournal Xbox-3m 

R@50 R@100 N@100 R@50 R@100 N@100 

Results of diferent FFN structures 

2-128 18.01 26.25 5.50 14.03 16.87 5.25 
2-1024 24.65 30.05 8.75 16.88 19.93 6.10 
3-128 20.66 28.13 6.26 13.79 16.88 4.96 
3-1024 31.44 36.37 13.41 18.52 21.19 7.61 

Results of diferent graph propagation methods 

Ã 31.44 36.37 13.41 18.52 21.19 7.61 
Ã 2 

29.26 34.86 11.84 16.97 19.83 6.63 
�̃ 23.15 29.50 8.33 15.83 18.32 6.16 

3.6 Hyper-parameter Sensitivity 
Here we study how xGCN is impacted by key hyper-parameters 
(we report the results on the Pokec dataset in the appendix). First, 
in Figure 5 we can observe that a proper setting of � and � in the re-
fresh controller is important, and the best setting difers in diferent 
datasets. On Pokec and Xbox-3m, the model is more sensitive with 
� , while on LiveJournal, the model is more sensitive with � . In gen-

eral, a setting of [� = 3, � = 10] can lead to a decent performance. 
Moreover, Table 5 shows the impact of the FFN structure in RefNet 
and graph propagation methods. As in expectation, a larger dimen-

sion size for the middle layers leads to better performance, which is 
verifed by comparing 2-1024 with 2-128 and comparing 3-1024 with 
3-128. Meanwhile, a deeper structure can boost the performance, 
e.g., 3-1024 can consistently outperform 2-1024 on three datasets. 
As for graph propagation methods, we compare three candidates 
for the propagation matrix P in the embedding propagation step: 
frst-order neighborhood Ã , second-order neighborhood Ã 2, and 
the top-� PPR neighbors �̃ 

. The simplest one, Ã , achieves the best 
performance consistently. A possible reason is that the recurrent 
[propagation, refnement, refresh] process already conveys messages 
from the high-order neighborhood. 

3.7 Visualization of Node Embeddings 
At last, we visualize node embeddings with the t-SNE package [24] 
to see if the learned embeddings have community patterns. We 
frst partition a social graph into 100 clusters with METIS, then 
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(a) node2vec (b) LightGCN (c) PPRGo (d) xGCN 

Figure 6: Visualization of embeddings on the Pokec dataset. Embeddings are mapped to a 2-D space with the t-SNE toolkit. We 
partition the Pokec graph by metis, then sample 8 clusters and assign each of them a dedicated color. Each point represents a 
node sampled from a cluster. 

tag each node with its afliated cluster ID as its label. For better 
conciseness, we randomly select 8 clusters and assign each cluster 
a dedicated color. Figure 6 shows the t-SNE plots on the Pokec 
dataset of four embedding models. Just like other classical models, 
xGCN can also generate meaningful embeddings from which the 
community information can be distinguished and the graph layout 
can be clearly displayed. 

4 RELATED WORK 
Shallow graph embedding. Factorization-based methods, such 
as Word2Vec [19] and Matrix Factorization [14], have been suc-

cessfully applied for sparse high-dimensional data. Motivated by 
them, researchers try to factorize nodes on a graph with embedding 
vectors. Perozzi et al. [21] introduce the method DeepWalk, which 
draws random walks over a graph and learns embedding vectors 
to measure co-occurring nodes within a window size. Grover et 
al. [9] argue that the random walk process should consider the 
second order of graph structure, instead of only randomly select-
ing a next step from the frst order neighborhood. Yao et al. [31] 
propose a unifed framework for random walk-based graph embed-

ding models with an efcient Metropolis-Hasting sampling method. 
Instead of using random walks, Tang et al. [23] design some objec-
tive functions to encode both frst-order and second-order graph 
proximities. As for scalable implementations for shallow graph em-

bedding methods, PBG [16] divides nodes into � buckets, so that the 
adjacency matrix is decomposed into � × � non-overlapping blocks. 
Multiple processes can simultaneously train edges from diferent 
blocks with minimum data synchronization. GraphVite [36] uses a 
similar approach to partition the graph, and it further introduces 
some efcient collaboration strategies for acceleration with GPUs. 
Graph neural networks. GNNs explicitly model a node’s neigh-

borhood information into its embedding vector with neural net-

works, they demonstrate superior performance compared with 
shallow graph embedding models. Kipf and Welling [13] propose 
the graph convolutional network (GCN) for semi-supervised classif-

cation. Velickovic et al. [25] propose the graph attention networks 
(GATs), which use self-attentional layers for specifying diferent 
weights to diferent neighbors. Xu et al. [30] introduce a theoret-

ical framework to help analyze the expressive power of GNNs, 
especially on what types of graph structures can or cannot be dis-
tinguished by some popular GNNs. He et al. [12] observe that for 

the link prediction task in recommender systems, feature transfor-

mation, and nonlinear activation are useless and even reduce the 
performance. Thus, they propose LightGCN, a simplifed structure 
of GCN. The aggregation of the neighborhood in GNNs makes them 
hard to scale to large graphs. To address this issue, Hamilton et al. 
[10] sample a fxed size of nodes in each hop of the neighborhood, 
so that computational cost will not grow exponentially with the 
number of hops. Chiang et al. [5] partition an original big graph 
into subgraphs. At each mini-batch training step, the neighborhood 
for convolutional operations is restricted in a selected subgraph. 
Bojchevski et al. [2] introduce PPRGo, which breaks the classical 
message-passing scheme of GNNs. PPRGo uses approximated Per-
sonalized Page Rank (PPR) to simplify the information difusion 
on the graph. It can bring signifcant speed gains while achiev-

ing competitive accuracy performance, and particularly achieves 
state-of-the-art performance on social-network-related tasks. 

5 CONCLUSIONS 
In this paper, we present xGCN, a novel GNN model that improves 
the accuracy, efciency, and scalability of graph-based embeddings 
for link prediction tasks. Unlike traditional GNNs that stack multi-

ple layers of neighborhood aggregation and optimize all parameters 
through end-to-end gradient back-propagation, xGCN learns graph 
structure information in a progressive [propagation, refnement, 
refresh] manner, reducing the bottleneck caused by heavy train-

able embedding tables. Our experiments on three large-scale social 
network datasets demonstrate the superiority of xGCN for link 
predictions. This research opens up new possibilities for large-scale 
graph-based embeddings in various applications such as recom-

mendation systems, social network analysis, and knowledge graph 
embeddings. Future work will focus on extending xGCN to other 
tasks such as node classifcation and designing mechanisms that 
can steer the dynamics and diversity of link recommendations to 
mitigate radicalization and polarization [22] in social networks. 
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A APPENDIX 

A.1 Theoretical Analysis 
A.1.1 EM Formulation. The framework and optimization of xGCN 
can be formulated and explained by the EM algorithm [20]. As 
a generative process, each node �’s base embedding vector z� is 
sampled from a standard Gaussian prior N(0, I� ). The base em-

bedding vector z� is transformed via a decoder ��� (·) to generate 
a distribution probability � (z� ) over � nodes indicating the edge 
existence probability. In this paper, we consider the task of dense 
link prediction, so we frst transform z� with the refnement net-

′
work, denoted by z = � (z� ; �, G), then use the similarity (such 

�
as dot product or cosine similarity) of refned representations to 
determine the likelihood of an edge ��, � : 

� (z� ) � ∝ ��� (��� (z� ; �, G) � ) = ��� (� (z� ; �, G) · � (z� ; �, G)) (7) 

��, � ∼ ����(� (z� ) � ) (8) 

where G denotes the graph structure, ��� denotes a softmax trans-

formation and ���� is the Bernoulli distribution. Unlike traditional 
models which usually make z∗ as learnable embedding parameters 
or use another graph encoder ��� (·) to derive z∗ then train all 
the parameters in an end-to-end manner, in xGCN, we take z∗ as 
unobserved latent variables and use the EM algorithm to optimize 
the model. 

For notation simplicity, let � (� ) denote the �-th data sample 
(which is a pair of nodes such as ��, � ) and � (� ) denote the latent 
variables associated with � (� ) (which is z� and z� ). Let � (�) denote 
the learned parameters at time step � . The EM algorithm takes the 
following form: 
E-step: Given the estimated parameter � (�) at iteration � , compute 
the expectation of latent variables: 

� (� (� ) ) = � (� (� ) |� (� ) ; � (�)) (9) 

M-step: Update � to maximize the expected likelihood of the ob-
served data (which is also called the �-function): 

� (� |� (�)) = arg max E� (� ) ∼� (� (� ) ) [��� � (� (� ) , � (� ) |� )] (10) 
� 

We assume the probability mass function � (� (� ) ) follows a sharp 
distribution, such as N(�(� (� ) ; � (�)), �2I), where �(� (� ) ; � (�)) = 
arg max � (� (� ) |� (� ) ; � (�)) and � → 0. Then, Eq. (10) can be simpli-

� (� )
fed to: 

� (� |� (�)) = arg max ��� [ � (� (� ) |�(� (� ) ; � (�)), � )·� (�(� (� ) ; � (�)) ] 
� 

(11) 
The next question is how to determine �(� (� ) ; � (�)). Here, we 

use the proof by contradiction to demonstrate that �(� (� ) ; � (�)) 
equals to the output of the refnement network. 

Proof. Assume that �(� (� ) ; � (�)) does not equal to the output of 
the refnement network which is denoted as � ′(� ) = � (� (� ) (�); � (�), G). 

≠ � ′′ Then, there exists another � ′′ (� ) = �(� (� ) ; � (�)) and � ′(� ) (� ) . Ac-

cording to Bayes’ theorem, 

� (� (� ) |� (� ) ; � (�)) · � (� (� ) ; � (�)) 
� (� (� ) |� (� ) ; � (�)) = 

� (� (� ) ; � (�)) 
∝ � (� (� ) |� (� ) ; � (�)) · � (� (� ) ) (12) 

which indicates that � (� (� ) |� ′′ (� ) ; � (�))·� (� ′′ (� ) ) > � (� (� ) |� ′(� ) ; � (�))· 
� (� ′(� ) ). But this cannot be true, because the purpose of the M-

step is via optimizing the parameters � (� ), so that the refnement 
network � (� (� ) (�); � (�), G) can output a value � ′(� ) to maximize 

Eq.(12). Hence we have a contradiction and so �(� (� ) ; � (�)) equals 
to the output of the refnement network. □ 

Once �(� (� ) ; � (�)) is determined, Eq. (11) can be directly opti-
mized by SGD. 

A.1.2 Analysis of Convergence. The convergence of xGCN can be 
easily proved by leveraging the convergence theory of the EM 
algorithm. Here we follow the theoretical derivations in [4]. 

Proof. Let �(� ) denote the log-likelihood of data � (for notation 
simplicity, we drop the subscript in � (� ) ) modeled with parameter 
� . Convergence can be guaranteed as long as we can prove that 
�(� (� + 1)) > �(� (� )). To this end, we start by 

�(� ) = ��� � (� |� )∫ 
= ��� � (�, � |� )�� 

X(� )∫ 
� (�, � |� )

= ��� � (� |�, � (�))�� 
X(� ) � (� |�, � (�)) � � 

� (�, � |� )
= ��� E�∼� (� |�,� (� ) ) (13)

� (� |�, � (�)) � � 
� (�, � |� )≥ E�∼� (� |�,� (� ) ) ��� (14)

� (� |�, � (�)) 
= � (� |� (�)) + E�∼� (� |�,� (� ) ) [−��� � (� |�, � (�))] 

where X(�) denotes the support of �. From Eq.(13) to Eq.(14) we 
apply Jensen’s inequality because ���(·) is a concave function. Let 
� (� |�, � (�)) denote E�∼� (� |�,� (� ) ) [−��� � (� |�, � (�))]. Then, 

�(� ) ≥ � (� |� (�)) + � (� |�, � (�)) 

Note that � (� |�, � (�)) does not depends on � . 

� (� (�) |� (�)) + � (� |�, � (�)) 
= E�∼� (� |�,� (� ) ) [��� � (�, � |� (�))] + E�∼� (� |�,� (� ) ) [−��� � (� |�, � (�))] 
= ��∼� (� |�,� (� ) )��� � (� |�, � (�)) 
= ��� � (� |� (�) 
≜ �(� (�)) 

By defnition of � (� |� (�)) from Eq.(10), we have � (� (� + 1) |� (�)) ≥ 
� (� (�) |� (�)), thus we can conclude that: 

�(� (� + 1)) − �(� (�)) 
≥ [� (� (� + 1) |� (�)) + � (� |�, � (�))] − [� (� (�) |� (�)) + � (� |�, � (�))] 
= � (� (� + 1) |� (�)) − � (� (�) |� (�)) 
≥ 0 

□ 
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A.1.3 Explanation of Eq.(9). Although Eq.(9) is intuitively under-

standable, here we provide some theoretical descriptions. The like-
lihood of a data sample is defned by 

�(� ) = ��� � (� |� )∫ 
= ��� � (�, � |� )�� 

X(� )∫ 
� (�, � |� )

= ��� � (�) �� 
X(� ) � (�)

� (�, � |� )≥ E�∼� (� ) ��� (15)

� (�)
Since the ���(·) function is not linear, the equality of 15 holds if 
and only if value inside ���(·) is a constant � , i.e., 

� (�, � |� ) = � · � (�) ∫ ∫ 
� (� |� ) = � (�, � |� ) = � · � (�)�� = � 

� � 
So, we can have 

� (�, � |� ) � (�, � |� )
� (�) = = = � (� |� ; � )

� � (� |� ) 

A.2 Task Settings and Datasets 
We use two biggest social network datasets from SNAP

2
, Pokec 

and LiveJournal, and one industrial social network dataset, Xbox, 
which is provided by Xbox Gaming Corp., and it is a gaming social 
network. The complete Xbox dataset contains about 100 million 
nodes, for a comprehensive comparison with baselines, we sample 
a medium-size subgraph including 3 million nodes and denote it as 
Xbox-3m. Some basic statistics are listed in Table 1. We evaluate 
model performance on the node recommendation task. Nodes in 
these graphs are users and edges are the follow relation between 
users. We evaluate model performance on the node recommenda-

tion task, i.e., given a user �, the task is to fnd related users that � 
will follow from the whole social graph. Specifcally, a small portion 
of edges is removed from the original graph to construct the valida-
tion set and the test set. Given an edge (�, �), � is considered as a 
positive node, and the users that are not followed by � are treated 
as negative nodes. The validation set and the test set contain 1000 
and 50000 positive edges respectively (the number of users may 
be less than the number of edges since a user can have multiple 
positive nodes). During training, we sample an edge (�, �) from the 
graph and sample a negative pair (�, �̂) to calculate loss by Eq.( 3). 
During the evaluation, we do not perform candidate sampling, the 
purpose is to retrieve positive nodes from the whole graph. 

A.3 Baseline Settings 
The embedding dimensions are set to 64 for all models (except 
for the Xbox-100m dataset, the dimension is set to 32). For Graph-

SAGE, GAT, GIN, SGC, S2
GC, SIGN, GBP, and GAMLP, we fnd 

they are hard to train from scratch, so we initialize their base 
embedding tables with a well-trained node2vec model. In most 
cases, we fnd it is better to freeze the base embedding table for 
the GNNs as static features, and only learn the weight parame-

ters of GCN layers. We use the BPR loss [12] for GraphSAGE, 

2
http://snap.stanford.edu/data/index.html 
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Table A1: Efciency (training time per epoch, in second) and 
memory (in GB) comparisons of diferent node2vec imple-
mentations. For PyG-GPU version, we list both its CPU mem-
ory and GPU memory consumption (CPU memory + GPU 
memory). 

Pokec LiveJournal Xbox-3m 

time memory time memory time memory 

SNAP 385 50.49 - OOM - OOM 
PyG-CPU 5100 4.62 10, 440 7.26 16, 560 8.03 
PyG-GPU 56 3.85 + 6.77 217 5.39 + 6.65 165 4.62 + 8.23 
Ours 292 1.65 650 2.75 955 3.74 

GAT, GIN, SGC, S2
GC, SIGN, GBP, GAMLP, LightGCN, PPRGo, 

and xGCN. For UltraGCN and SimpleX, we use the loss functions in 
their original papers. In xGCN, the neural architecture of RefNet is: 
[������ (64, 1024),���ℎ, ������ (1024, 1024),���ℎ, ������ (1024, 64)]. 
The structure of SNN is [������ (64, 32),���ℎ, ������ (32, 1), �������]. 
���� is set to 3. We search the hyper-parameters for each baseline 
model, and the code and detailed confgurations to reproduce the 
results can be found at https://github.com/CGCL-codes/xGCN. 

A.4 Scalable Implementation of node2vec 
The traditional implementation of node2vec cannot scale to large 
graphs due to the existence of the transition probability matrix 
(including the C-implemented version 3 

released by the SNAP and 
the implementation in PyG 4). So in Table 3 we report the node2vec 
results by our own implementation, where there are mainly two 
key components: the graph walking trajectories and word2vec em-

bedding. For the frst component, we adopt the rejection sampling 
method to generate node2vec trajectories (please refer to [31] for 
detailed theory) without maintaining a transition probability matrix. 
We accelerate the trajectories generation process with Numba 5, 
which is an open-source JIT compiler that translates a subset of 
Python and NumPy code into fast machine code. For the second 
part, we adopt Gensim’s word2vec module, because it is already 
accelerated with c/c++ through Cython. The two components are 
chained under the producer-consumer pipeline, so parallelism is 
guaranteed. Table A1 is a training efciency comparison between 
our node2vec implementation with SNAP’s C-implementation and 
PyG. We strictly make both implementations share the same hyper-

parameters for training epochs. SNAP implementation cannot even 
scale to LiveJournal and Xbox-3m datasets. Although PyG-GPU is 
the fastest one, it cannot scale to the 100m graph dataset. 

3
https://github.com/snap-stanford/snap/tree/master/examples/node2vec 

4
https://www.pyg.org 

5
https://numba.pydata.org 
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