
xGCN: An Extreme Graph Convolutional Network for Large-scale
Social Link Prediction

Xiran Song Jianxun Lian Hong Huang
∗

Huazhong University of Science and Microsoft Research Asia Zihan Luo
Technology Beijing, China

Wei Zhou
Wuhan, China jianxun.lian@outlook.com

Xue Lin
xiransong@hust.edu.cn

honghuang@hust.edu.cn
Huazhong University of Science and

Technology
Wuhan, China

Mingqi Wu Chaozhuo Li Hai Jin
Microsoft Gaming Xing Xie Huazhong University of Science and

Redmond, United States Microsoft Research Asia Technology

Beijing, China Wuhan, China

ABSTRACT
Graph neural networks (GNNs) have seen widespread usage across
multiple real-world applications, yet in transductive learning, they
still face challenges in accuracy, efciency, and scalability, due to
the extensive number of trainable parameters in the embedding
table and the paradigm of stacking neighborhood aggregations.
This paper presents a novel model called xGCN for large-scale net-

work embedding, which is a practical solution for link predictions.
xGCN addresses these issues by encoding graph-structure data in
an extreme convolutional manner, and has the potential to push
the performance of network embedding-based link predictions to a
new record. Specifcally, instead of assigning each node with a di-
rectly learnable embedding vector, xGCN regards node embeddings
as static features. It uses a propagation operation to smooth node
embeddings and relies on a Refnement neural Network (RefNet) to
transform the coarse embeddings derived from the unsupervised
propagation into new ones that optimize a training objective. The
output of RefNet, which are well-refned embeddings, will replace
the original node embeddings. This process is repeated iteratively
until the model converges to a satisfying status. Experiments on
three social network datasets with link prediction tasks show that
xGCN not only achieves the best accuracy compared with a series
of competitive baselines but also is highly efcient and scalable.

∗
Hong Huang is the corresponding author. Xiran Song, Hong Huang, Zihan Luo, Wei
Zhou, Xue Lin and Hai Jin are afliated with the National Engineering Research Center
for Big Data Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583340

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Learning latent representations.

KEYWORDS
Link prediction, graph neural network, social recommendation

ACM Reference Format:
Xiran Song, Jianxun Lian, Hong Huang, Zihan Luo, Wei Zhou, Xue Lin,
Mingqi Wu, Chaozhuo Li, Xing Xie, and Hai Jin. 2023. xGCN: An Extreme
Graph Convolutional Network for Large-scale Social Link Prediction. In
Proceedings of the ACM Web Conference 2023 (WWW ’23), April 30–May 04,
2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3543507.3583340

1 INTRODUCTION
Graph structure data, such as social networks, knowledge graphs,
and molecular graphs, is prevalent in modern life. Graph embed-

ding [8] has been shown to be an efective technique for repre-
senting graph structure data by encoding each node with a low-

dimensional vector. In recent years, research interests have shifted
from shallow graph embeddings [9, 21, 23] towards graph neural
networks (GNNs) [29] due to their superior ability to explicitly en-

code useful patterns from the high-order neighborhood [26, 27].
In this paper, we examine the case of embedding social networks,
where a user’s neighborhood on the graph plays a crucial role in
representing the user, and its application in social link prediction.

In the inductive graph representation learning tasks [10], the
nodes are associated with attributes, and all trainable parameters
come from the graph neural networks: Θ = {Θ� }. However, in
classical network embedding tasks, each node is associated with a �-
dimensional embedding vector which is trainable, so the parameter
set becomes Θ = {Θ� , Θ� }. Θ� is called the embedding table and
denoted by E hereinafter. Mainstream methods of GNNs usually
follow a general paradigm: aggregating messages from neighbors,
performing some transformation, stacking these two steps multiple
times to acquire high-order neighborhood information, and learn-

ing all the parameters by stochastic gradient descent (SGD). Potential

349

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3543507.3583340
https://doi.org/10.1145/3543507.3583340
https://doi.org/10.1145/3543507.3583340
mailto:permissions@acm.org
mailto:jianxun.lian@outlook.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583340&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Song, et al.

vector

sigmoid
scalar

o
p

tim
ize o

b
jective fu

n
ctio

n

.

FFN

SNN

initial
embedding

graph
structure

new
embedding

refined
embedding

overwrite

new initial
embedding

embedding
table

(ii) RefNet learning with SGD for epochs(i) Propagation (iii) Refresh

Tan
h

Tan
h

Lin
ear

Tan
h

refined
embedding

parameter
update

Figure 1: An overview of the key components in xGCN

drawbacks of this paradigm are three-fold: (1) The neighborhood
size increases exponentially with the hop distance, which can easily
cause the over-smoothness problem and scalability issue; (2) For a
graph with � nodes, the embedding table E alone has � (��) learn-

able parameters, which makes GNNs hard to parallelize (because
the communication cost will dominate the computational cost); (3)
Parameters in Θ� and in Θ� have diferent properties (e.g., Θ�
is dense while Θ� is sparse), however, both of them are updated
by gradient back-propagation in a unifed framework. It together
with the existence of gradient vanishing and gradient explosion
issues, may lead to sub-optimal performance in both the training
efciency and fnal accuracy of GNNs. Thus, in some prior studies,
researchers fnd that removing Θ� and retaining only Θ� can yield
better performance [12] for link predictions.

In this paper, we propose a brand-new GNN named xGCN, which
is short for extreme graph convolutional network, for social link pre-
dictions. Our motivations come from a series of prior studies: (1)
RandNE [34] demonstrates that the network structure information
can be preserved with iteratively embedding propagation without
any trainable parameters; (2) LightGCN [12] indicates that in the
embedding propagation framework, when the node embedding is
trainable with some supervised labels such as link predictions, the
quality of node embeddings can further be improved; (3) [6, 15]
demonstrate that the Feed Forward Network (FFN) plays a key role
in memorizing knowledge and performing essential information
transformation in the Transformer architecture. Thus, we aban-

don the classical paradigm of GNN, which is denoted as [neighbors
aggregation, transformation, stacking, SGD(Θ� , Θ�)] for simplic-

ity. Instead, we propose a new paradigm of iterative [Propagation,
Refnement, SGD(Θ�), Refresh], which integrates the motivations
of message propagation, controllable embeddings, and message
distillation. An overview of this process is illustrated in Figure 1.

Similar to RandNE, the node embeddings in xGCN are not train-

able, thus, we can get rid of the � (��) embedding table and the
model is feasible for parallelization. We frst perform a step of em-

bedding propagation to encode the network structure information
into node embeddings (Figure 1-(i)). We argue that as long as a
node embedding carries a certain amount of graph structure infor-

mation, an FFN module can perform information transformation

so that node embeddings are refned to a better status (Figure 1-
(ii)). Trainable parameters are located only in the FFN module, and
they are updated by SGD. After the FFN is optimized, we refresh
the embedding table with the output of FFN (Figure 1-(iii)). In this
way, the embedding table gets updated in one shot rather than
in a slow, iterative manner with SGD (such as the mechanism in
LightGCN [12]).

We conduct link prediction experiments on three real-world
social network datasets. xGCN consistently outperforms a set of
competitive baselines such as GAMLP and PPRGo. This demon-

strates that the new GNN framework can learn high-quality embed-

dings for various social networks. Besides the accuracy advantage,
we also conduct training efciency studies and verify that xGCN
converges much faster than classical GNN models. At last, to test
the scalability, we train xGCN on a 100 million Xbox graph with a
single machine, using only 92 GB RAM and 11 hours to converge,
and it can outperform node2vec by a large margin. To summarize,

• We propose a novel model xGCN for social link prediction, which
gets rid of the traditional GNN paradigm and achieves better ac-
curacy, efciency, and scalability with less trainable parameters.

• We design three core components, including propagation, the
refnement network, and a refresh control mechanism, to make
xGCN efective and robust across diferent social networks.

• We conduct experiments on three datasets to demonstrate the
superiority of xGCN on efectiveness, efciency, and scalability.
Our code is released at https://github.com/CGCL-codes/xGCN.

2 METHODOLOGIES

2.1 Task Defnition
Graph embedding for link predictions. Given a graph G =
(V, E) containing |V| = � nodes and |E | = � edges. The edges
of G can also be formulated as an adjacency matrix A ∈ R� ×�

,
with A�� = 1 indicating an edge from node � to node � . A diagonal Í�
matrix D stores the degree of each node: D�� =

�=1 A�� . Our
goal is to learn an embedding model � which can represent each
node � ∈ V with a �-dimensional embedding vector x� = � (� |G),
x� ∈ R�

, so that the occurrence probability of an edge between two
�

nodes � and � can be measured by their dot-product �̂�� = x� x� .

350

https://github.com/CGCL-codes/xGCN

xGCN: An Extreme Graph Convolutional Network for Large-scale Social Link Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

2.2 The Framework of xGCN
Mainstream graph embedding models usually allocate a learnable
embedding table E ∈ R� ×�

. It together with some additional graph
neural network parameters Θ� , constitutes the trainable parameter
set of � , i.e., Θ = {Θ� , Θ� }. However, when the size of the graph
is large, which is the common case for real-world social networks,
the trainable embedding table E becomes the bottleneck causing
training efciency and scalability problems. In xGCN, we propose a
totally diferent approach, in which there are three key operations,
including embedding propagation, embedding refnement, and em-
bedding refresh. These three operations are executed in a chain and
will be repeated for multiple iterations until convergence, with the
fundamental goal of learning graph-structure-aware node embed-

dings. In contrast to existing GNNs, the embedding table in xGCN
is not the trainable parameter, and all trainable parameters lie in a
refnement neural network, i.e., Θ = {Θ� }. To distinguish from a
trainable embedding table, we use Z to denote the base embedding
table of xGCN. We initialize Z randomly and then perform a graph
convolutional operation to smooth nearby nodes’ embedding as
well as propagate node information along the graph structure. Next,
we train a Refnement neural Network (denoted as RefNet) to trans-

form the current embeddings into new embeddings X, with the
goal to preserve useful signals and flter out noises. The parameters
of RefNet will be updated by normal gradient descent methods
such as SGD. Third, when the RefNet is well trained, which means
that it can output higher quality embeddings, we replace Z with X,
which we refer to as the embedding refresh operation. These three
operations are repeated with multiple iterations until the model
converges to a satisfying status. The overview of xGCN is illus-

trated in Figure 1 and Algorithm 1. Details for each key operation
are as follows.

2.3 Key Components
2.3.1 Embedding propagation. We assume that the unique in-

formation for each node is stored in the corresponding embedding
vector in Z. At the very beginning, Z is initialized as a random
matrix. Since the local neighborhood is important to depict a node,
we aggregate neighbors to derive the node’s new representation,
so that the network structure information is strengthened:

E ← PZ (1)

where P is the propagation matrix of the graph, it stands for the
direction of information to be smoothed and can have diferent
implementations, such as the normalized adjacency matrix Ã of
G (i.e., information is propagated to the frst order neighborhood):
Ã = D−1/2AD−1/2

, or the top-� PPR neighbors matrix �̃
(i.e., prop-

agate to the most infuential neighbors for the center node), or
multiplication of normalized adjacency matrix: Ã 2

(i.e., propagate
to the second order neighborhood). We empirically fnd that using
Ã can achieve the best performance.

2.3.2 RefNet learning. Embedding propagation is an unsuper-

vised operation. Although it can encode graph structure informa-

tion, unfortunately, it also brings a lot of noise. To extract use-

ful information and flter out noise, we design a RefNet compo-

nent to learn to transform relatively lower-quality embeddings into
ones that better encode the graph structure. RefNet is composed

of a Feed-Forward Network (FFN) and a Scaling Neural Network
(SNN). The last hidden layer of FFN does not include an activa-
tion function, while the rest of the hidden layers use Tanh as an
activation function. A design principle for FFN is that the middle
layers need a signifcantly larger dimension than the input vec-
tor. E.g., a 2-layer FFN with an input embedding size being 64 is
[������ (64, 1024),���ℎ, ������ (1024, 64)], where ������ indicates
multiplying a parameter matrix and then adding a bias vector. The
SNN is a smaller neural network that outputs a single scalar be-
tween (0, 1), which shapes the magnitude of FFN’s output vectors
to a proper level. We empirically fnd that the normalization of
the last layer of FFN is important and SNN performs much better
than others such as Tanh and L2-normalization. The SNN’s struc-

ture is [������ (64, 32),���ℎ, ������ (32, 1), �������]. The output of
RefNet is:

X = �� � (E) · ��� (E) (2)

We adopt the pair-wise ranking loss function – BPR [12] – to opti-
mize the parameters in the RefNet: ∑

1 L = �� � ����� (��,�̂ − ��,�) (3)|E | ⟨�,� ⟩∈E,⟨�,�̂⟩∉E

where ��,� is the scorer to estimate edge probability according to the
node embeddings. Without loss of generality, in this paper, we use

�
dot product, ��,� = x� x� , as the scorer, but it can be easily extended
to other types of scorers such as Logistic Regression or Deep Neural
Networks. For each positive edge (�, �) ∈ E, we randomly sample a
pair of nodes (�, �̂) which does not exist in E as a negative instance.

2.3.3 Embedding refresh. Note that the embedding table E is not
trainable during the learning process of RefNet. After the RefNet is
well trained, the resulting embeddings can represent a better state
of the node representations, so we replace the embedding table
with RefNet’s output:

Z ← X (4)

2.3.4 Training strategy. During the training of xGCN, the three
operations – embedding propagation, RefNet learning, and embed-

ding refresh – are repeatedly executed. One challenge is how to
coordinate between RefNet learning and embedding refresh. Since
these two components are not optimized with derivable parameters
under an end-to-end framework, if the refresh operation is per-

formed at an improper time, RefNet’s optimization may be severely
impacted (see experiments in Section 3.5, setting K=0 and K=Inf,
and Section 3.6). To address this challenge, we design a simple yet
efective refresh controlling mechanism: during a warm-up stage,
the representation refresh operation and propagation operation are
performed after the RefNet is updated for � epochs; there are in
total � times refresh/propagation operations in the warm-up stage,
where both � and � are hyper-parameters; after the warm-up stage,
embeddings will not be refreshed at a regular frequency; instead,
we use the validation set to detect the best epoch of embeddings
up to now. If the RefNet can no longer improve the metrics on
the validation set for ���� epochs, which means the refnement for
the current input embedding table is converged, we refresh the
embedding table with the current best state of the embedding table,

351

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Song, et al.

and then perform propagation, with the hope that RefNet can con-

tinue to refne the embeddings at a new start. The detailed training
algorithm is shown in Algorithm 1.

Algorithm 1 xGCN Training Process

Input: Graph G = (V, E), Hyper-parameters � , � , ����
Output: Node embeddings X

1: Randomly initialize E and RefNet.
2: Do Propagation according to Eq.(1)
3: ����� �� � ���ℎ ����� ← 0
4: for ����ℎ = 1 to ���_����ℎ do
5: update RefNet with SGD to minimize Eq.(3)
6: if ����� �� � ���ℎ ����� < � then
7: /* In the warm-up stage */
8: if epoch % T == 0 then
9: Do Refresh according to Eq.(4)

10: Do Propagation according to Eq.(1)
11: ����� �� � ���ℎ ����� += 1
12: end if
13: else
14: if no improvement for ���� epochs then
15: Do Refresh according to Eq.(4)
16: Do Propagation according to Eq.(1)
17: end if
18: end if
19: end for

2.4 Discussions
xGCN is a new style of GNN, which includes two decoupled steps:
step-1 is to conduct message propagation, so the graph-structure
signals can be distributed to node embeddings. There are two pur-

poses designed for this step: providing graph signals and reducing
repeated subgraph computation cost. Step-2 is designed for infor-

mation refnement (RefNet) since both useful and useless signals
will be passed in step-1. Prior works such as [1] reveal that the bot-
tleneck of message-passing style GNNs lies in the over-squashing
issues, especially for long-range dependencies, which motivates us
to leverage a more powerful refnement network (RefNet) to distill
useful information from the squashed embedding.

Classical models allocate a learnable embedding vector for each
node, which will result in massive learnable parameters (for exam-

ple, 100 million nodes with 32-dimensional embedding vectors). Too
many learnable parameters usually make models hard to optimize,
prone to overftting, and poor in generalization. xGCN puts all the
learnable parameters in RefNet, which contains fewer parameters
than the embedding table; meanwhile, RefNet is shared by all the
nodes, and its parameters do not belong to sparse parameters, so
the generalization ability is better.

2.5 Theoretical Analysis
The framework and optimization of xGCN can be formulated and
explained by the EM algorithm [20]. For notation simplicity, let
� (�) denote the �-th data sample (which represents a pair of nodes)
and � (�) denote the latent variables associated with � (�) . Let � (�)
denote the learned parameters at time step � . The EM algorithm
takes the following form:

Table 1: Basic statistics of datasets

nodes # edges ave. degree density

Pokec 1,632,803 27,560,308 16.9 2.06�−5
LiveJournal 4,847,571 62,094,395 12.8 5.28�−6
Xbox-3m 3,000,000 80,194,576 26.7 1.78�−5

E-step: Given the estimated parameter � (�) at iteration � , compute
the expectation of latent variables:

� (� (�)) = � (� (�) |� (�) ; � (�)) (5)

M-step: Update � to maximize the expected likelihood of the ob-
served data (which is also called the �-function):

� (� |� (�)) = arg max E� (�) ∼� (� (�)) [��� � (� (�) , � (�) |�)] (6)
�

The M-step is represented by Line 5 in Algorithm 1 which opti-
mizes model parameters to maximize a value function, while the
E-step is represented by Lines 6 to 18 with an implementation trick
- the probability mass function � (� (�)) follows a sharp distribution,
allowing us to fnd the maximum value instead of calculating expec-

tations. Detailed theoretical analysis can be found in Appendix A.1.
As a result, both the feasibility of the model and convergence of
the optimizer can be guaranteed by leveraging the theory of the
EM algorithm.

3 EXPERIMENTS

3.1 Experiment Setup
3.1.1 Datasets. We use two biggest social network datasets from
SNAP

1
, Pokec and LiveJournal, and one industrial dataset, Xbox,

which is a gaming social network provided by Xbox Gaming Corp.
The complete Xbox dataset contains about 100 million nodes, for a
comprehensive comparison with baselines, we sample a medium-

size subgraph including 3 million nodes and denote it as Xbox-3m.
Basic statistics are listed in Table 1. We evaluate model performance
on the node recommendation task, with details on task settings
introduced in Appendix A.2.

3.1.2 Evaluation metrics. Two widely used evaluation metrics
are adopted - Recall and Normalized Discounted Cumulative Gain
(NDCG) [12, 33]. Recall@� measures the ability to retrieve positive
target nodes among top � recommendations, which is defned as
the number of retrieved positive nodes divided by the number of
total ground-truth positive nodes. We average all users’ individ-

ual Recall@� as the overall Recall@� indicator. NDCG measures
how well positive target nodes can be ranked to the top positions
compared with an ideal ranking order. In the experiments, for con-

ciseness, we report Recall@50, Recall@100, and NDCG@100, which
are abbreviated as R@50, R@100, and N@100, respectively.

3.1.3 Baselines. We compare xGCN against a variety of methods,
including pure propagation method RandNE [34]; shallow graph
embedding methods: node2vec [9], SimpleX [17], and UltraGCN
[18] (though named after "GCN", it does not perform graph convolu-

tion operation explicitly); competitive GNNs: GraphSAGE [10], GAT

1
http://snap.stanford.edu/data/index.html

352

http://snap.stanford.edu/data/index.html

xGCN: An Extreme Graph Convolutional Network for Large-scale Social Link Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[25] and GIN [30], LightGCN [12], SGC [28], S2
GC [35], SIGN [7],

GBP [3], GAMLP [32], and PPRGo [2]. Detailed hyper-parameters
can be found in Appendix A.3.

3.2 Overall Performance
The overall accuracy performance comparison is summarized in
Table 2. For all the datasets, we repeat each model 5 times and report
the average scores with standard deviations. We have the following
observations: (1) On all three datasets, xGCN outperforms baseline
models by a large margin. E.g., when compared with the best base-
line in terms of Recall@100, xGCN achieves a performance gain of
15.34% on Pokec, 16.20% on LiveJournal, and 48.18% on Xbox-3m.
(2) GNN methods, such as GraphSAGE, GAT, and GIN, are generally
better than shallow graph embedding methods, which is in line
with the intuition. GNNs explicitly encode meaningful information
from the neighborhood to strengthen a node’s representation, in
theory, they have stronger expressiveness than shallow embedding
methods. (3) In most cases, simplifed GNNs (such as LightGCN and
PPRGo) outperform non-simplifed ones (GraphSAGE, GAT, and
GIN). On Pokec and LiveJournal, the performance of non-simplifed
GNNs is signifcantly much worse than PPRGo, even when their
base embedding tables are warmed-up with a well-trained node2vec
model, while PPRGo is trained from scratch. These observations
are consistent with some related works [12, 28]. In the scenario of
node recommendations, embedding transformation, and nonlinear
activation may bring difculty for model training, and thus, de-
grade models’ performance. Diferent from GraphSAGE, GAT, and
GIN, xGCN moves embedding transformation and nonlinear acti-
vation from graph convolutions to a refnement network, leaving
the message propagation process parameter-free.

To investigate whether xGCN exhibits unfairness, such as its high
overall accuracy being achieved by diminishing the performance
of some nodes to greatly enhance the performance of others, we
plot the accuracy by group in Figure 2. We compare node2vec and
PPRGo since node2vec is the most classical node embedding method
and PPRGo is the best baseline method on Pokec and LiveJournal.
We sort nodes by their degree in ascending order and then split
nodes into 10 percentiles. E.g., 0 on the x-axis in Figure 2 means
the nodes whose degree belongs to the 0 − 10% percentile. We can
observe that xGCN consistently outperforms baselines in all the
node groups, which demonstrates that the superiority of xGCN
comes from its true power rather than playing some distribution
tricks. Another interesting observation is that nodes with lower
degrees have higher accuracy values. This phenomenon indicates
that users’ earlier social relationships are easier to predict.

3.3 Training Efciency
Next, we examine the training efciency of xGCN, compared with
LightGCN and PPRGo. All models are run with 100 epochs using
the same hardware confguration: GPU is Tesla P100, 16GB and CPU
is Intel Xeon CPU E5-2690 v4 @ 2.60GHz. For each epoch, we print
the Recall@100 score on the validation set. Figure 3 depicts the
training curves of the three models. On all three datasets, xGCN
uses far less time to converge to a satisfying status. Since xGCN
is much more lightweight than LightGCN and PPRGo, training
one epoch of xGCN takes less time than the other two GNNs. For

0 20 40 60 80
percentile of degrees

0.05

0.10

0.15

0.20

re
ca

ll@
10

0

node2vec
PPRGo
xGCN

0 20 40 60 80
percentile of degrees

0.1

0.2

0.3

0.4

0.5

re
ca

ll@
10

0

node2vec
PPRGo
xGCN

(a) Pokec (b) LiveJournal

Figure 2: Group-level performance of xGCN, PPRGo, and
node2vec. Nodes are evenly split into 10 groups according to
the degree in ascending order.

0 50000 100000 150000
time (seconds)

0.0

0.1

0.2

0.3

R
ec

al
l@

10
0

xGCN
PPRGo
LightGCN

0 25 50 75 100
epoch

xGCN
PPRGo
LightGCN

(a) LiveJournal

0 20000 40000 60000
time (seconds)

0.00

0.05

0.10

0.15

0.20

R
ec

al
l@

10
0

xGCN
PPRGo
LightGCN

0 25 50 75 100
epoch

xGCN
PPRGo
LightGCN

(b) Xbox-3m

Figure 3: Training efciency study. The curves are Re-
call@100 scores on the validation set.

example, on the Xbox-3m dataset, training one epoch costs around
50 seconds for xGCN, 2000 seconds for LightGCN, and 1800 seconds
for PPRGo. Besides, on Pokec and LiveJournal, xGCN converges
with fewer epochs, thus, the total training time of xGCN is much
less than PPRGo and LightGCN. On the Xbox-3m dataset, although
xGCN takes a few more epochs to converge, the absolute time cost
of xGCN is still much less than the other two models.

3.4 Large-scale Graph with 100 Million Nodes
We test the scalability of xGCN with a real-world Xbox social net-

work that contains 100 million nodes. Our goal is to explore how
we can learn large-scale graph embeddings easily with a single
normal machine, so in this section, all the models in comparison
are run on a CPU device with large RAM. Due to the time limit, we
allow all the models to run for at most 72 hours. If a model does not
converge after 72 hours, we stop it and use its best model snapshot
to perform an evaluation. We tune a few key parameters such as

353

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Song, et al.

Table 2: Overall performance comparison of diferent models on three datasets. Numbers are in percentage (%).

Pokec LiveJournal Xbox-3m

R@50 R@100 N@100 R@50 R@100 N@100 R@50 R@100 N@100

RandNE [34] 1.04±0.05 1.69±0.08 0.44±0.02 0.30±0.02 0.37±0.02 0.14±0.01 0.60±0.01 0.76±0.02 0.26±0.01

node2vec [9] 4.51±0.06 7.45±0.10 1.74±0.04 12.89±0.25 16.93±0.29 5.26±0.09 8.52±0.23 10.56±0.26 3.39±0.10

UltraGCN [18] 5.62±0.42 7.74±0.49 2.16±0.15 11.14±0.65 14.27±0.74 4.39±0.26 2.30±0.13 3.04±0.15 0.89±0.05

SimpleX [17] 1.01±0.06 1.53±0.10 0.44±0.03 6.82±0.32 8.70±0.34 2.64±0.12 0.77±0.01 1.01±0.06 0.30±0.01

GraphSAGE [10] 7.22±0.11 10.87±0.16 2.76±0.05 19.84±0.25 24.63±0.30 8.17±0.08 10.26±0.39 12.39±0.49 4.14±0.18

GAT [25] 4.65±0.27 7.60±0.35 1.72±0.08 17.59±0.44 22.66±0.47 6.87±0.18 5.17±0.17 7.04±0.16 1.83±0.05

GIN [30] 7.62±0.13 11.24±0.18 2.92±0.04 21.44±0.20 25.79±0.18 8.99±0.10 10.24±0.08 12.00±0.11 4.38±0.04

SGC [28] 6.01±0.00 10.24±0.00 2.18±0.00 12.43±0.10 16.52±0.10 473±0.07 5.18±0.04 7.20±0.05 2.03±0.02

S
2
GC [35] 7.15±0.00 10.72±0.00 2.59±0.00 14.67±0.34 20.30±0.26 4.82±0.13 7.64±0.07 10.21±0.06 2.89±0.03

SIGN [7] 5.58±0.76 9.38±0.99 2.00±0.24 15.84±0.40 19.09±0.55 6.55±0.14 7.64±0.06 9.12±0.11 3.25±0.04

GBP [3] 9.24±0.15 13.23±0.20 3.49±0.04 22.65±0.32 27.36±0.27 9.55±0.09 12.07±0.24 14.30±0.26 4.92±0.11

GAMLP [32] 12.50±0.25 17.22±0.33 4.58±0.11 24.77±0.39 30.01±0.35 10.22±0.19 11.39±0.26 13.48±0.26 4.68±0.12

LightGCN [12] 12.26±0.63 17.55±0.72 4.78±0.23 21.74±0.35 27.49±0.39 8.26±0.14 5.91±0.11 7.98±0.11 2.21±0.05

PPRGo [2] 13.99±0.19 18.58±0.20 5.30±0.08 25.48±0.58 31.30±0.59 9.54±0.16 10.64±0.08 12.27±0.09 4.22±0.04

xGCN [ours] 16.07±0.21 21.43±0.24 6.25±0.06 31.44±0.09 36.37±0.14 13.41±0.09 18.52±0.18 21.19±0.09 7.61±0.09

Improv. +14.87% +15.34% +17.92% +23.39% +16.20% +31.21% +53.43% +48.18% +54.67%

Table 3: Results of training on 100m Xbox social graph

R@100 N@100 #. param Training Time

RandNE 0.18 0.09 0 16 minutes
node2vec 2.50 0.54 3.2�9 72 hours
LightGCN 0.42 0.14 3.2�9 72 hours
PPRGo 3.68 1.19 3.2�9 72 hours
GraphSAGE 4.54 1.43 3.2�9 + 1�4 72 + 30 hours
GBP 4.54 1.48 3.2�9 + 6.7�4 72 + 15 hours
xGCN 6.10 1.85 1.1�6 11 hours

the learning rate and GCN layers so that each model can achieve
its best performance with the hard 72 hours time constraint. For
node2vec, the traditional implementations cannot scale to large
graphs due to the existence of the transition probability matrix.
To address issues, we especially implement a highly efcient and
scalable version of node2vec by ourselves. Technical details can
be referred to in Appendix A.4. Now one epoch of node2vec costs
about 24 hours. We fnd that directly training GraphSAGE with each
node assigning a learnable embedding vector will lead to very poor
performance. Thus, we use node2vec’s results to initialize Graph-

SAGE’s embedding table, and we denote the Total Training Time of
GraphSAGE as 72+30 hours, with 72 hours of node2vec training and
30 hours of GraphSAGE training. For xGCN, one epoch costs about
51 minutes, and it converges at the 9th epoch, so the total training
time is less than 11 hours (because we spare some tolerance epochs
before early stopping). The CPU memory consumption of xGCN is
92 GB. The accuracy comparison is shown in Table 3, from which

0 10 20 30 40 50
epoch

0.0

0.1

0.2

0.3

re
ca

ll@
10

0 RandNE(10) + RefNet

prop1
prop3
prop5
prop10
full

0 20 40 60 80
epoch

0.00

0.05

0.10

0.15

0.20

RandNE(10)
+ RefNet

prop1
prop3
prop5
prop10
full

(a) LiveJournal (b) Xbox-3m

Figure 4: Comparisons of learning curves of xGCN with dif-
ferent propagation times. Each red point signifes the epoch
time at which propagation is initiated.

we can see that xGCN uses less time than all the learnable baselines
and achieves much better accuracy performance.

3.5 Ablation Study
We perform ablation studies to justify the necessity of some key
components: (1) the iterative refresh-then-propagate training frame-

work, (2) the scaling neural network (SNN) in the RefNet, and (3) the
warm-up training stage. The results are reported in Table 4 (due
to the space limitation, we move the results on the Pokec dataset
to the appendix), where we can have the following conclusions:
(i) shows that purely propagating on the randomly initialized em-

beddings is hard to encode any useful information. (ii.a) and (ii.b)
indicate that RefNet has a certain ability to transform relatively
low-quality embeddings into more representative ones, however,

354

xGCN: An Extreme Graph Convolutional Network for Large-scale Social Link Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 4: Ablation studies for xGCN. Notation explanations:
(i) Pure-prop: only do propagation for multiple times. (ii.a)
Random-RefNet: randomly initialize the embedding table,
then learn RefNet, do not perform refresh or do propagation.
(ii.b) Prop-RefNet: frst do propagation (based on (i)), then
learn RefNet. (ii.c) Prop-RefNet-refresh: frst do propagation
(based on (i)), then learn RefNet, perform refresh but do no
more propagation. (iii.a) Full K=0: set � = 0, which means re-
moving the warm-up training stage. (iii.b) Full K=Inf: set
� = ∞, which means the training process only contains
the warm-up stage. Group (iv) analyses the efectiveness of
SSN. For example, "2L-FFN-SSN" denotes the RefNet is com-
posed of a 2-layer FFN and an SSN. "Res" means replacing
the SSN with a common residual connection. "3L-FFN-SSN
(Full)" equals to the fnal xGCN.

LiveJournal Xbox-3m

R@50 R@100 N@100 R@50 R@100 N@100

(i) Pure-prop 0.13 0.26 0.05 0.04 0.06 0.01

(ii.a) Random-RefNet 0.19 0.32 0.07 0.59 0.73 0.21

(ii.b) Prop-RefNet 24.28 28.29 9.61 7.11 9.16 2.37

(ii.c) Prop-RefNet-refresh 24.36 28.35 9.45 9.32 10.53 3.70

(iii.a) Full K=0 29.07 32.47 12.32 14.55 16.65 5.95

(iii.b) Full K=Inf 28.96 34.61 12.24 18.05 20.81 7.29

(iv.a) 2L-FFN-Res 23.46 29.96 7.55 13.86 17.77 4.89

(iv.b) 2L-FFN-SSN 24.65 30.05 8.75 16.88 19.93 6.10

(iv.c) 3L-FFN-Res 18.93 24.17 6.47 9.95 13.67 3.30

(iv.d) 3L-FFN-SSN (Full) 31.44 36.37 13.41 18.52 21.19 7.61

only learning a RefNet is still far from achieving satisfying perfor-

mance. The comparison of (iv.d) and (ii.c) suggests that without the
propagation operation, the iterative refresh-then-training process
cannot continuously improve the quality of the embeddings. (iii.a)
and (iii.b) indicate the necessity of the two-stage training strategy
as well as the refresh controlling mechanism. (iv.a) - (iv.d) demon-

strate the necessity of the SNN, when it is replaced with a classical
ResNet [11], the performance is greatly afected, and the impact of
SNN on the 3-layer FFN is greater than it on the 2-layer FFN.

To gain a clearer understanding of the benefts of propagation
for xGCN, we fxed the maximum propagation times to 1, 3, 5, and
10 and plotted the accuracy curves on the validation set in Figure 4.
E.g., prop3 means that when the propagation time reaches 3, we stop
further propagation of xGCN and only train the RefNet in the sub-

sequent epochs. full indicates a normal setting of xGCN. Each red
point in the fgure indicates an epoch time when propagation is trig-
gered. Figure 4 demonstrates that propagation is critical for xGCN
to converge to a satisfying state. Inadequate times of propagation
lead to poor performance. On the other hand, the required maxi-

mum number of propagations is not large, i.e., usually, 10 is close
to the best performance. Propagation and RefNet learning should
be placed under the iterative learning framework, as a counter-

example, in Figure 4, the transverse line RandNE(10)+RefNet means
that we directly propagate the embedding for 10 times and then
start training the RefNet until it converges. Its performance is much
worse than the corresponding prop10 version, which indicates the
necessity of iterative update of propagation and RefNet.

2 5 10 20 30
K

0.345

0.350

0.355

0.360

R
ec

al
l@

10
0

T=1
T=3
T=10

2 5 10 20 30
K

0.14

0.16

0.18

0.20

R
ec

al
l@

10
0

T=1
T=3
T=10

(a) LiveJournal (b) Xbox-3m

Figure 5: Hyper-parameter study on � and �

Table 5: Hyper-parameter studies: comparisons of FFN struc-
tures and graph propagation methods

LiveJournal Xbox-3m

R@50 R@100 N@100 R@50 R@100 N@100

Results of diferent FFN structures

2-128 18.01 26.25 5.50 14.03 16.87 5.25
2-1024 24.65 30.05 8.75 16.88 19.93 6.10
3-128 20.66 28.13 6.26 13.79 16.88 4.96
3-1024 31.44 36.37 13.41 18.52 21.19 7.61

Results of diferent graph propagation methods

Ã 31.44 36.37 13.41 18.52 21.19 7.61
Ã 2

29.26 34.86 11.84 16.97 19.83 6.63
�̃ 23.15 29.50 8.33 15.83 18.32 6.16

3.6 Hyper-parameter Sensitivity
Here we study how xGCN is impacted by key hyper-parameters
(we report the results on the Pokec dataset in the appendix). First,
in Figure 5 we can observe that a proper setting of � and � in the re-
fresh controller is important, and the best setting difers in diferent
datasets. On Pokec and Xbox-3m, the model is more sensitive with
� , while on LiveJournal, the model is more sensitive with � . In gen-

eral, a setting of [� = 3, � = 10] can lead to a decent performance.
Moreover, Table 5 shows the impact of the FFN structure in RefNet
and graph propagation methods. As in expectation, a larger dimen-

sion size for the middle layers leads to better performance, which is
verifed by comparing 2-1024 with 2-128 and comparing 3-1024 with
3-128. Meanwhile, a deeper structure can boost the performance,
e.g., 3-1024 can consistently outperform 2-1024 on three datasets.
As for graph propagation methods, we compare three candidates
for the propagation matrix P in the embedding propagation step:
frst-order neighborhood Ã , second-order neighborhood Ã 2, and
the top-� PPR neighbors �̃

. The simplest one, Ã , achieves the best
performance consistently. A possible reason is that the recurrent
[propagation, refnement, refresh] process already conveys messages
from the high-order neighborhood.

3.7 Visualization of Node Embeddings
At last, we visualize node embeddings with the t-SNE package [24]
to see if the learned embeddings have community patterns. We
frst partition a social graph into 100 clusters with METIS, then

355

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Song, et al.

(a) node2vec (b) LightGCN (c) PPRGo (d) xGCN

Figure 6: Visualization of embeddings on the Pokec dataset. Embeddings are mapped to a 2-D space with the t-SNE toolkit. We
partition the Pokec graph by metis, then sample 8 clusters and assign each of them a dedicated color. Each point represents a
node sampled from a cluster.

tag each node with its afliated cluster ID as its label. For better
conciseness, we randomly select 8 clusters and assign each cluster
a dedicated color. Figure 6 shows the t-SNE plots on the Pokec
dataset of four embedding models. Just like other classical models,
xGCN can also generate meaningful embeddings from which the
community information can be distinguished and the graph layout
can be clearly displayed.

4 RELATED WORK
Shallow graph embedding. Factorization-based methods, such
as Word2Vec [19] and Matrix Factorization [14], have been suc-

cessfully applied for sparse high-dimensional data. Motivated by
them, researchers try to factorize nodes on a graph with embedding
vectors. Perozzi et al. [21] introduce the method DeepWalk, which
draws random walks over a graph and learns embedding vectors
to measure co-occurring nodes within a window size. Grover et
al. [9] argue that the random walk process should consider the
second order of graph structure, instead of only randomly select-
ing a next step from the frst order neighborhood. Yao et al. [31]
propose a unifed framework for random walk-based graph embed-

ding models with an efcient Metropolis-Hasting sampling method.
Instead of using random walks, Tang et al. [23] design some objec-
tive functions to encode both frst-order and second-order graph
proximities. As for scalable implementations for shallow graph em-

bedding methods, PBG [16] divides nodes into � buckets, so that the
adjacency matrix is decomposed into � × � non-overlapping blocks.
Multiple processes can simultaneously train edges from diferent
blocks with minimum data synchronization. GraphVite [36] uses a
similar approach to partition the graph, and it further introduces
some efcient collaboration strategies for acceleration with GPUs.
Graph neural networks. GNNs explicitly model a node’s neigh-

borhood information into its embedding vector with neural net-

works, they demonstrate superior performance compared with
shallow graph embedding models. Kipf and Welling [13] propose
the graph convolutional network (GCN) for semi-supervised classif-

cation. Velickovic et al. [25] propose the graph attention networks
(GATs), which use self-attentional layers for specifying diferent
weights to diferent neighbors. Xu et al. [30] introduce a theoret-

ical framework to help analyze the expressive power of GNNs,
especially on what types of graph structures can or cannot be dis-
tinguished by some popular GNNs. He et al. [12] observe that for

the link prediction task in recommender systems, feature transfor-

mation, and nonlinear activation are useless and even reduce the
performance. Thus, they propose LightGCN, a simplifed structure
of GCN. The aggregation of the neighborhood in GNNs makes them
hard to scale to large graphs. To address this issue, Hamilton et al.
[10] sample a fxed size of nodes in each hop of the neighborhood,
so that computational cost will not grow exponentially with the
number of hops. Chiang et al. [5] partition an original big graph
into subgraphs. At each mini-batch training step, the neighborhood
for convolutional operations is restricted in a selected subgraph.
Bojchevski et al. [2] introduce PPRGo, which breaks the classical
message-passing scheme of GNNs. PPRGo uses approximated Per-
sonalized Page Rank (PPR) to simplify the information difusion
on the graph. It can bring signifcant speed gains while achiev-

ing competitive accuracy performance, and particularly achieves
state-of-the-art performance on social-network-related tasks.

5 CONCLUSIONS
In this paper, we present xGCN, a novel GNN model that improves
the accuracy, efciency, and scalability of graph-based embeddings
for link prediction tasks. Unlike traditional GNNs that stack multi-

ple layers of neighborhood aggregation and optimize all parameters
through end-to-end gradient back-propagation, xGCN learns graph
structure information in a progressive [propagation, refnement,
refresh] manner, reducing the bottleneck caused by heavy train-

able embedding tables. Our experiments on three large-scale social
network datasets demonstrate the superiority of xGCN for link
predictions. This research opens up new possibilities for large-scale
graph-based embeddings in various applications such as recom-

mendation systems, social network analysis, and knowledge graph
embeddings. Future work will focus on extending xGCN to other
tasks such as node classifcation and designing mechanisms that
can steer the dynamics and diversity of link recommendations to
mitigate radicalization and polarization [22] in social networks.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (No.62172174, 62127808).

356

xGCN: An Extreme Graph Convolutional Network for Large-scale Social Link Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Uri Alon and Eran Yahav. 2021. On the Bottleneck of Graph Neural Networks

and its Practical Implications. In Proceedings of the 9th International Conference
on Learning Representations. 1–12.

[2] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling Graph Neural Networks with Approximate PageRank. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2464–2473.

[3] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-
Rong Wen. 2020. Scalable Graph Neural Networks via Bidirectional Propagation.
In Proceedings of the Annual Conference on Neural Information Processing Systems
2020. 14556–14566.

[4] Yihua Chen and Maya R. Gupta. 2010. EM Demystifed: An Expectation-

Maximization Tutorial. UWEE Technical Report UWEETR-2010-0002 (2010),
1–26.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efcient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 257–266.

[6] Yuxin Fang, Li Dong, Hangbo Bao, Xinggang Wang, and Furu Wei. 2023. Cor-

rupted Image Modeling for Self-Supervised Visual Pre-Training. In Proceedings
of the 11th International Conference on Learning Representations. 1–12.

[7] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. SIGN: Scalable Inception Graph Neural
Networks. In Proceedings of Graph Representation Learning and Beyond Workshop
at the 37th International Conference on Machine Learning. 1–9.

[8] Palash Goyal and Emilio Ferrara. 2018. Graph Embedding Techniques, Applica-

tions, and Performance: A Survey. Knowledge Based Systems 151 (2018), 78–94.
[9] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for

Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 855–864.

[10] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representa-

tion Learning on Large Graphs. In Proceedings of the 31th International Conference
on Neural Information Processing Systems. 1024–1034.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition. 770–778.

[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Net-

work for Recommendation. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 639–648.

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifcation with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations. 1–14.

[14] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer 42, 8 (2009), 30–37.

[15] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2021. GShard:
Scaling Giant Models with Conditional Computation and Automatic Sharding. In
Proceedings of the 9th International Conference on Learning Representations. 1–14.

[16] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alexander Peysakhovich. 2019. PyTorch-BigGraph: A Large-scale
Graph Embedding System. In Proceedings of Machine Learning and Systems 2019.
120–131.

[17] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,
and Xiuqiang He. 2021. SimpleX: A Simple and Strong Baseline for Collaborative
Filtering. In Proceedings of the 21st ACM Conference on Information and Knowledge
Management. 1243–1252.

[18] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
2021. UltraGCN: Ultra Simplifcation of Graph Convolutional Networks for
Recommendation. In Proceedings of the 21st ACM Conference on Information and
Knowledge Management. 1253–1262.

[19] Tomás Mikolov, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Efcient
Estimation of Word Representations in Vector Space. In Proceedings of the 1st
International Conference on Learning Representations. 1–12.

[20] Todd K. Moon. 1996. The Expectation-maximization Algorithm. IEEE Signal
Processing Magazine 13, 6 (1996), 47–60.

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-

ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 701–710.

[22] Fernando P. Santos, Yphtach Lelkes, and Simon A. Levin. 2021. Link Recom-

mendation Algorithms and Dynamics of Polarization in Online Social Networks.
Proceedings of the National Academy of Sciences 118, 50 (2021), e2102141118.

[23] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-Scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web. 1067–1077.

[24] Laurens van der Maaten and Geofrey Hinton. 2008. Visualizing Data Using
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605.

[25] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of the
6th International Conference on Learning Representations. 1–12.

[26] Yiqi Wang, Chaozhuo Li, Mingzheng Li, Wei Jin, Yuming Liu, Hao Sun, Xing Xie,
and Jiliang Tang. 2022. Localized graph collaborative fltering. In Proceedings of
the 2022 SIAM International Conference on Data Mining (SDM). SIAM, 540–548.

[27] Yiqi Wang, Chaozhuo Li, Zheng Liu, Mingzheng Li, Jiliang Tang, Xing Xie, Lei
Chen, and Philip S Yu. 2022. An Adaptive Graph Pre-training Framework for
Localized Collaborative Filtering. ACM Transactions on Information Systems 41, 2
(2022), 1–27.

[28] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
Proceedings of the 36th International Conference on Machine Learning. 6861–6871.

[29] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In Proceedings of the 7th International Conference
on Learning Representations. 1–17.

[31] Xingyu Yao, Yingxia Shao, Bin Cui, and Lei Chen. 2021. UniNet: Scalable Network
Representation Learning with Metropolis-Hastings Sampling. In Proceedings of
the 37th IEEE International Conference on Data Engineering. 516–527.

[32] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu
Tao, Zhi Yang, and Bin Cui. 2022. Graph Attention Multi-Layer Perceptron. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4560–4570.

[33] Yiding Zhang, Chaozhuo Li, Xing Xie, Xiao Wang, Chuan Shi, Yuming Liu, Hao
Sun, Liangjie Zhang, Weiwei Deng, and Qi Zhang. 2022. Geometric Disentan-

gled Collaborative Filtering. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 80–90.

[34] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-

Scale Network Embedding with Iterative Random Projection. In Proceedings of
the 2018 IEEE International Conference on Data Mining. 787–796.

[35] Hao Zhu and Piotr Koniusz. 2021. Simple Spectral Graph Convolution. In Pro-
ceedings of the 9th International Conference on Learning Representations. 1–12.

[36] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. 2019. GraphVite: A High-

Performance CPU-GPU Hybrid System for Node Embedding. In Proceedings of
The Web Conference 2019. 2494–2504.

357

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Song, et al.

A APPENDIX

A.1 Theoretical Analysis
A.1.1 EM Formulation. The framework and optimization of xGCN
can be formulated and explained by the EM algorithm [20]. As
a generative process, each node �’s base embedding vector z� is
sampled from a standard Gaussian prior N(0, I�). The base em-

bedding vector z� is transformed via a decoder ��� (·) to generate
a distribution probability � (z�) over � nodes indicating the edge
existence probability. In this paper, we consider the task of dense
link prediction, so we frst transform z� with the refnement net-

′
work, denoted by z = � (z� ; �, G), then use the similarity (such

�
as dot product or cosine similarity) of refned representations to
determine the likelihood of an edge ��, � :

� (z�) � ∝ ��� (��� (z� ; �, G) �) = ��� (� (z� ; �, G) · � (z� ; �, G)) (7)

��, � ∼ ����(� (z�) �) (8)

where G denotes the graph structure, ��� denotes a softmax trans-

formation and ���� is the Bernoulli distribution. Unlike traditional
models which usually make z∗ as learnable embedding parameters
or use another graph encoder ��� (·) to derive z∗ then train all
the parameters in an end-to-end manner, in xGCN, we take z∗ as
unobserved latent variables and use the EM algorithm to optimize
the model.

For notation simplicity, let � (�) denote the �-th data sample
(which is a pair of nodes such as ��, �) and � (�) denote the latent
variables associated with � (�) (which is z� and z�). Let � (�) denote
the learned parameters at time step � . The EM algorithm takes the
following form:
E-step: Given the estimated parameter � (�) at iteration � , compute
the expectation of latent variables:

� (� (�)) = � (� (�) |� (�) ; � (�)) (9)

M-step: Update � to maximize the expected likelihood of the ob-
served data (which is also called the �-function):

� (� |� (�)) = arg max E� (�) ∼� (� (�)) [��� � (� (�) , � (�) |�)] (10)
�

We assume the probability mass function � (� (�)) follows a sharp
distribution, such as N(�(� (�) ; � (�)), �2I), where �(� (�) ; � (�)) =
arg max � (� (�) |� (�) ; � (�)) and � → 0. Then, Eq. (10) can be simpli-

� (�)
fed to:

� (� |� (�)) = arg max ��� [� (� (�) |�(� (�) ; � (�)), �)·� (�(� (�) ; � (�))]
�

(11)
The next question is how to determine �(� (�) ; � (�)). Here, we

use the proof by contradiction to demonstrate that �(� (�) ; � (�))
equals to the output of the refnement network.

Proof. Assume that �(� (�) ; � (�)) does not equal to the output of
the refnement network which is denoted as � ′(�) = � (� (�) (�); � (�), G).

≠ � ′′ Then, there exists another � ′′ (�) = �(� (�) ; � (�)) and � ′(�) (�) . Ac-

cording to Bayes’ theorem,

� (� (�) |� (�) ; � (�)) · � (� (�) ; � (�))
� (� (�) |� (�) ; � (�)) =

� (� (�) ; � (�))
∝ � (� (�) |� (�) ; � (�)) · � (� (�)) (12)

which indicates that � (� (�) |� ′′ (�) ; � (�))·� (� ′′ (�)) > � (� (�) |� ′(�) ; � (�))·
� (� ′(�)). But this cannot be true, because the purpose of the M-

step is via optimizing the parameters � (�), so that the refnement
network � (� (�) (�); � (�), G) can output a value � ′(�) to maximize

Eq.(12). Hence we have a contradiction and so �(� (�) ; � (�)) equals
to the output of the refnement network. □

Once �(� (�) ; � (�)) is determined, Eq. (11) can be directly opti-
mized by SGD.

A.1.2 Analysis of Convergence. The convergence of xGCN can be
easily proved by leveraging the convergence theory of the EM
algorithm. Here we follow the theoretical derivations in [4].

Proof. Let �(�) denote the log-likelihood of data � (for notation
simplicity, we drop the subscript in � (�)) modeled with parameter
� . Convergence can be guaranteed as long as we can prove that
�(� (� + 1)) > �(� (�)). To this end, we start by

�(�) = ��� � (� |�)∫
= ��� � (�, � |�)��

X(�)∫
� (�, � |�)

= ��� � (� |�, � (�))��
X(�) � (� |�, � (�)) � �

� (�, � |�)
= ��� E�∼� (� |�,� (�)) (13)

� (� |�, � (�)) � �
� (�, � |�)≥ E�∼� (� |�,� (�)) ��� (14)

� (� |�, � (�))
= � (� |� (�)) + E�∼� (� |�,� (�)) [−��� � (� |�, � (�))]

where X(�) denotes the support of �. From Eq.(13) to Eq.(14) we
apply Jensen’s inequality because ���(·) is a concave function. Let
� (� |�, � (�)) denote E�∼� (� |�,� (�)) [−��� � (� |�, � (�))]. Then,

�(�) ≥ � (� |� (�)) + � (� |�, � (�))

Note that � (� |�, � (�)) does not depends on � .

� (� (�) |� (�)) + � (� |�, � (�))
= E�∼� (� |�,� (�)) [��� � (�, � |� (�))] + E�∼� (� |�,� (�)) [−��� � (� |�, � (�))]
= ��∼� (� |�,� (�))��� � (� |�, � (�))
= ��� � (� |� (�)
≜ �(� (�))

By defnition of � (� |� (�)) from Eq.(10), we have � (� (� + 1) |� (�)) ≥
� (� (�) |� (�)), thus we can conclude that:

�(� (� + 1)) − �(� (�))
≥ [� (� (� + 1) |� (�)) + � (� |�, � (�))] − [� (� (�) |� (�)) + � (� |�, � (�))]
= � (� (� + 1) |� (�)) − � (� (�) |� (�))
≥ 0

□

358

xGCN: An Extreme Graph Convolutional Network for Large-scale Social Link Prediction

A.1.3 Explanation of Eq.(9). Although Eq.(9) is intuitively under-

standable, here we provide some theoretical descriptions. The like-
lihood of a data sample is defned by

�(�) = ��� � (� |�)∫
= ��� � (�, � |�)��

X(�)∫
� (�, � |�)

= ��� � (�) ��
X(�) � (�)

� (�, � |�)≥ E�∼� (�) ��� (15)

� (�)
Since the ���(·) function is not linear, the equality of 15 holds if
and only if value inside ���(·) is a constant � , i.e.,

� (�, � |�) = � · � (�) ∫ ∫
� (� |�) = � (�, � |�) = � · � (�)�� = �

� �
So, we can have

� (�, � |�) � (�, � |�)
� (�) = = = � (� |� ; �)

� � (� |�)

A.2 Task Settings and Datasets
We use two biggest social network datasets from SNAP

2
, Pokec

and LiveJournal, and one industrial social network dataset, Xbox,
which is provided by Xbox Gaming Corp., and it is a gaming social
network. The complete Xbox dataset contains about 100 million
nodes, for a comprehensive comparison with baselines, we sample
a medium-size subgraph including 3 million nodes and denote it as
Xbox-3m. Some basic statistics are listed in Table 1. We evaluate
model performance on the node recommendation task. Nodes in
these graphs are users and edges are the follow relation between
users. We evaluate model performance on the node recommenda-

tion task, i.e., given a user �, the task is to fnd related users that �
will follow from the whole social graph. Specifcally, a small portion
of edges is removed from the original graph to construct the valida-
tion set and the test set. Given an edge (�, �), � is considered as a
positive node, and the users that are not followed by � are treated
as negative nodes. The validation set and the test set contain 1000
and 50000 positive edges respectively (the number of users may
be less than the number of edges since a user can have multiple
positive nodes). During training, we sample an edge (�, �) from the
graph and sample a negative pair (�, �̂) to calculate loss by Eq.(3).
During the evaluation, we do not perform candidate sampling, the
purpose is to retrieve positive nodes from the whole graph.

A.3 Baseline Settings
The embedding dimensions are set to 64 for all models (except
for the Xbox-100m dataset, the dimension is set to 32). For Graph-

SAGE, GAT, GIN, SGC, S2
GC, SIGN, GBP, and GAMLP, we fnd

they are hard to train from scratch, so we initialize their base
embedding tables with a well-trained node2vec model. In most
cases, we fnd it is better to freeze the base embedding table for
the GNNs as static features, and only learn the weight parame-

ters of GCN layers. We use the BPR loss [12] for GraphSAGE,

2
http://snap.stanford.edu/data/index.html

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table A1: Efciency (training time per epoch, in second) and
memory (in GB) comparisons of diferent node2vec imple-
mentations. For PyG-GPU version, we list both its CPU mem-
ory and GPU memory consumption (CPU memory + GPU
memory).

Pokec LiveJournal Xbox-3m

time memory time memory time memory

SNAP 385 50.49 - OOM - OOM
PyG-CPU 5100 4.62 10, 440 7.26 16, 560 8.03
PyG-GPU 56 3.85 + 6.77 217 5.39 + 6.65 165 4.62 + 8.23
Ours 292 1.65 650 2.75 955 3.74

GAT, GIN, SGC, S2
GC, SIGN, GBP, GAMLP, LightGCN, PPRGo,

and xGCN. For UltraGCN and SimpleX, we use the loss functions in
their original papers. In xGCN, the neural architecture of RefNet is:
[������ (64, 1024),���ℎ, ������ (1024, 1024),���ℎ, ������ (1024, 64)].
The structure of SNN is [������ (64, 32),���ℎ, ������ (32, 1), �������].
���� is set to 3. We search the hyper-parameters for each baseline
model, and the code and detailed confgurations to reproduce the
results can be found at https://github.com/CGCL-codes/xGCN.

A.4 Scalable Implementation of node2vec
The traditional implementation of node2vec cannot scale to large
graphs due to the existence of the transition probability matrix
(including the C-implemented version 3

released by the SNAP and
the implementation in PyG 4). So in Table 3 we report the node2vec
results by our own implementation, where there are mainly two
key components: the graph walking trajectories and word2vec em-

bedding. For the frst component, we adopt the rejection sampling
method to generate node2vec trajectories (please refer to [31] for
detailed theory) without maintaining a transition probability matrix.
We accelerate the trajectories generation process with Numba 5,
which is an open-source JIT compiler that translates a subset of
Python and NumPy code into fast machine code. For the second
part, we adopt Gensim’s word2vec module, because it is already
accelerated with c/c++ through Cython. The two components are
chained under the producer-consumer pipeline, so parallelism is
guaranteed. Table A1 is a training efciency comparison between
our node2vec implementation with SNAP’s C-implementation and
PyG. We strictly make both implementations share the same hyper-

parameters for training epochs. SNAP implementation cannot even
scale to LiveJournal and Xbox-3m datasets. Although PyG-GPU is
the fastest one, it cannot scale to the 100m graph dataset.

3
https://github.com/snap-stanford/snap/tree/master/examples/node2vec

4
https://www.pyg.org

5
https://numba.pydata.org

359

http://snap.stanford.edu/data/index.html
https://github.com/snap-stanford/snap/tree/master/examples/node2vec
https://www.pyg.org
https://numba.pydata.org
https://github.com/CGCL-codes/xGCN

	Abstract
	1 Introduction
	2 Methodologies
	2.1 Task Definition
	2.2 The Framework of xGCN
	2.3 Key Components
	2.4 Discussions
	2.5 Theoretical Analysis

	3 Experiments
	3.1 Experiment Setup
	3.2 Overall Performance
	3.3 Training Efficiency
	3.4 Large-scale Graph with 100 Million Nodes
	3.5 Ablation Study
	3.6 Hyper-parameter Sensitivity
	3.7 Visualization of Node Embeddings

	4 Related Work
	5 Conclusions
	Acknowledgments
	References
	A appendix
	A.1 Theoretical Analysis
	A.2 Task Settings and Datasets
	A.3 Baseline Settings
	A.4 Scalable Implementation of node2vec

