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Abstract—Real-world networks are often heterogeneous and constantly changing over time. Evolution reveals the trend of network
development, which is vital for predicting its future state, and network embedding can effectively learn the information from it.
Nevertheless, previous works only consider the impact of meta-path instances or node neighbors on the network dynamics but ignore
the relationship between them, and hence the hidden semantic information is missed, which will result in performance deterioration.
Therefore, we propose a novel temporal heterogeneous information network embedding method (SemE), which abstracts the instance
of the meta-path as semantic units and then considers the interaction between them to discover deeper semantic information.
Specifically, based on a pre-designed meta-path-guided random walk, SemE first samples semantic units and constructs semantic
networks through the star topology found in Ethernet and the interaction between semantic units. Next, to further model semantic
evolution, SemE describes the semantic dynamics of nodes with the attention-Hawkes process. Finally, the final embedding is
generated by aggregating the structure, semantic and temporal information with the attention mechanism. Experiments on three
real-world temporal heterogeneous information networks show that SemE performs better than competitive counterparts.

Index Terms—Temporal heterogeneous information network, network embedding, semantic evolution.
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1 INTRODUCTION

A S we all know, the world is networked, and network
embedding has helped us understand the real-world

data because of its powerful representation capability, and
benefits to various applications, like social recommendation
[1], academic search engines [2], and molecular property
prediction [3]. However, previous works mainly focus on
homogeneous or static networks, but most networks in
the real world are heterogeneous and change over time.
For example, an academic network contains three types of
nodes: author, paper, conference, and various types of rela-
tionships, such as an author ’writes’ a paper and ’citations’
between papers. With the development of time, an author
will write a new paper, a paper may be cited by some new
papers, and so on. Therefore, to further understand real-
world temporal heterogeneous information networks (HINs),
more and more scholars have focused on temporal HIN
embedding.

In general, previous methods for temporal HIN embed-
ding fall into two categories: 1) Snapshot-based methods,
such as DyHAN [4], DHNE [5]. First, they divide the
dataset into snapshots of different times and leverage the
embedding methods for static HINs on each snapshot, then
aggregate the embeddings of different timestamps. How-
ever, these methods ignore the temporal information be-
tween the snapshot. To solve this problem, another category
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Fig. 1. (a) A toy example of THINE. (b) A toy example of HPGE. The blue
dashed box shows the corresponding semantic unit, the red dashed line
indicates the target to be predicted, and the solid orange line indicates
the ignored information.

of methods is proposed, 2) Evolutionary dynamics-based
methods, such as THINE [6] and HPGE [7]. They sample
meta-path instances or node neighbors from the HIN and
then simulated the network dynamics by their temporal
information and achieved satisfactory results. For the sake
of a concise statement, we refer to meta-path instances,
node neighbors, and other units that consider semantic
information collectively as semantic units.

However, previous works only consider the influence of
semantic units on the network dynamics without further
consideration of the relationships between semantic units.
For example, THINE and HPGE are recently representative
meta-path instance based methods and neighborhood based
methods, respectively. As shown in Figure 1(a), to predict
whether a1 and a2 will form the edge, THINE randomly
samples the meta-paths instance related to a1 or a2, such
as a3p1a2p2a5 and a4p3a1p4a6, and uses them to calculate
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(c) Temporal link prediction

Fig. 2. We compare the importance of semantic and structure information on three datasets, Aminer, DBLP, and Yelp. To capture the structure
information, we abstract the whole network into a homogeneous network by ignoring relationships and types of nodes and then use ProNE [8]
to learn the embedding of all nodes. While to obtain semantic information, we generate semantic units by meta-path guided random walk and
construct semantic networks. Then we use ProNE to generate embedding for semantic units and use the average of embedding corresponding
semantic units as the embedding of nodes. Please see Section 3 for more details. Finally, we apply structure and semantic embedding to the node
classification, link prediction, and temporal link prediction and report their accuracy.

the generation probability of edge a1a2. However, THINE
ignores the relationship between meta-path instances, i.e.,
edges a4p1 and a5p4, which causes THINE to lose much
information to help predict the network structure. Similarly,
in Figure 1(b), the HPGE samples the neighbors of a1 and a2
but does not consider the relationships between neighbors.
If HPGE considers the interaction between semantic units,
it can capture more information to describe the structure of
the network better.

Actually, the relationship between semantic units is es-
sential for learning the embedding of the temporal HIN.
On the one hand, semantic information is more important than
structure information. In practical experiments, we compare
the importance of semantic and structure information by
three tasks on three HINs, and the experimental results are
shown in Figure 2. We can see that semantic information is
more valuable than structure information in various tasks.
Moreover, in definition, semantic information is obtained
by particular network structures that express clear and
specific semantics. In HINs, structural information contains
a lot of noise that is irrelevant to the downstream task,
while carefully selected semantic information can eliminate
it and thus outperform structural information. Therefore,
the richer semantic information obtained by capturing the
interaction between semantic units can help the model learn
the representation of nodes in HINs better. On the other
hand, semantic information is helpful to describe the structure
of the network. According to [9], [10], the paths between
two nodes help predict the link between them. Similarly, by
considering the interactions between semantic units, we can
find many hidden paths between two nodes, which is help-
ful in describng the structure of the temporal HIN. Thus,
hidden semantic information is beneficial for embedding
learning.

There are many semantic units in the HIN, and consid-
ering the relationship between them will result in a large
memory and time overhead. But if we only consider the
interaction between some of the semantic units such as
those related to edge a1a2 in Figure 1, there will be a

loss of information. So it is challenging to consider the
relationship between semantic units efficiently with as little
loss of information as possible.

To solve this problem, we propose a novel model —
SemE. For each pre-designed meta-path, we abstract the
corresponding semantic units as nodes. To efficiently con-
sider the global interaction between semantic units, based
on the star topology found in Ethernet and the relationship
between semantic units, we construct a sparse network—
semantic network, which can be regarded as a special ho-
mogeneous network because it contains only one kind of se-
mantic information. In addition, since semantic information
is more important than structure information in HINs, we
propose semantic evolution based on semantic networks,
which describes the semantic dynamics of nodes. To en-
hance the scalability of the model, we only extract semantic
information in the semantic network and then use the
attention-Hawkes process to model temporal information.
In this way, all semantic and temporal information is well
preserved. Finally, we aggregate the structure, semantic, and
temporal information to obtain the final embeddings by the
attention mechanism [4]. Experiments prove that SemE can
effectively describe the semantic evolution pattern of nodes
and perform better than competitive counterparts.

The contributions of our work are as follows:

• To the best of our knowledge, it is the first attempt to
consider the relationship between semantic units and pro-
pose the semantic evolution, which helps us effectively
model the dynamics of the temporal HIN and preserve its
dynamics and heterogeneity.

• We propose a novel model that can effectively capture
information from temporal HINs by modeling semantic
evolution with the attention-Hawkes process.

• With the semantic network, we reduce the complexity of
the network and migrate the embedding problem on the
HIN to the homogeneous network, which significantly
accelerates the speed of node embedding learning.

• Various experiments on three real-world temporal HINs
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demonstrate that SemE outperforms competitive counter-
parts.

2 PROBLEM DEFINITIONS AND PRELIMINARIES

2.1 Definitions

Definition 1: Temporal HIN. A Temporal HIN is defined
as G = (V,E, T,Φ), where V and E denote the set of
nodes and edges, T represents the set of timestamps, and
Φ = {ΦV ,ΦE} indicates the sets of node and edge types. In
a temporal HIN, each node v or edge e has a corresponding
class, obtained by type mapping function ϕ : V → ΦV

or φ : E → ΦE , respectively, where |ΦV | + |ΦE | > 2.
Furthermore, between two successive timestamps, t - 1
and t, the temporal HIN G satisfies that V t−1 ̸= V t or
Et−1 ̸= Et, where V t−1 and V t represent the set of nodes
at timestamp t - 1 and t respectively, while Et−1 and Et

denote the set of edges at timestamp t - 1 and t respectively.
Note that ΦV and ΦE do not change at all timestamps.
Definition 2: Meta-path. A meta-path m is defined

as Φv1

Φe1−→ Φv2

Φe2−→ · · ·
Φel−→ Φvl+1

, where node type
Φvi ∈ ΦV and edge type Φei ∈ ΦE . It can be abbreviated
as Φv1Φv2 · · ·Φvl+1

, which describes a complex composite
relation between v1 and vl+1 . A path instance of meta-path
m is treated as a node sequence v1 v2 · · · vl+1 , which follows
meta-path m .
Definition 3: Semantic Unit. In fact, node neighbors are
included in the meta-path instances or the deep semantic
relationship between meta-path instances. For example, in
Figure 1(b), the edge a5p1 ignored by node neighbors is
included in the meta-path instance a2p1a5. While the edge
a3a4 ignored by node neighbors will be considered through
the relationship between meta-path instances a6a2a4
and a6a1a3. Therefore, in this paper, given a temporal
HIN, we abstract the instance of meta-path as a semantic
unit. In order to ensure the integrity and unambiguity of
semantic information, the length of semantic units must
meet ℓ = (|m| − 1) ∗ q + 1, where |m| is the length of the
meta-path m, and q is a positive integer which indicates the
number of semantic information contained in the semantic
unit. For example, when q = 2, with the meta-path APA,
we will get a semantic unit such as a1p1a2p2a3, which
contains two semantic information, a1p1a2 and a2p2a3.
However, too long a semantic unit may bring noise because
the semantics far away may not be related to the first
node. Finally, we use the latest time of the edge as the
time of the semantic unit. For example, a semantic unit
p1

t1−→ c1
t2−→ p2, t2 > t1, this semantic unit occurs only

when the time reaches t2.
Definition 4: Semantic Network. Given a network G ,
all nodes in the network are the semantic units related
to meta-path m . Then the network G can be called the
semantic network of meta-path m . We build this network
by the correlation between semantic units. We will discuss
the detailed construction process in Section 3.2.
Problem. Temporal HIN Embedding. Given a temporal
HIN G = (V,E, T,Φ), where V and E denote the set
of nodes and edges, T represents the set of time, and
Φ = {ΦV ,ΦE} indicates the sets of node and edge types.
The goal is to obtain a mapping function f : V → Rd, where

d is the embedding dimension and d << |V |. f retains the
structure features of the network and captures semantic
information and temporal information by modeling the
semantic evolution pattern of nodes.

2.2 Preliminaries: Star and Mesh Topology

In the real world, there are multiple different topologies in
Ethernet. Inspired by the mesh and star topologies found
in Ethernet, we build the semantic network to efficiently
capture the global interactions between semantic units.

Mesh topology is a common topology in Ethernet, whose
all nodes are connected to each other. The mesh topology in
small communities can increase reliability and information
delivery efficiency. Still, when the community is enormous,
the network will be too dense and have high costs. Similar to
the mesh topology, star topology is also a common topology
in Ethernet. All nodes are individually connected to a central
connection point, like a hub or a switch. Star topology has
a more straightforward structure and higher scalability than
mesh topology in the large community.

3 OUR MODEL

The framework of SemE is shown in Figure 3. Firstly, we
capture the semantic units in the network by random walk
based on meta-paths. Secondly, with the help of the star
topology found in Ethernet, we construct a semantic net-
work consisting of only semantic units and a series of central
nodes to extract the global interaction between semantic
units. Then, we generate embedding for all nodes in the
semantic network by the unsupervised network embedding
method. With the attention-Hawkes process, we converge
these semantic units in a temporal order to simulate the
semantic evolution process in the network. Finally, by fusing
the different semantic evolution processes and the structure
information of the network with the attention mechanism,
we obtain the final temporal HIN embedding and apply it
to different downstream tasks.

3.1 Semantic Unit Generation

Semantic units can effectively describe the semantics of
nodes. For example, when the edges links to node i increase,
node i will express richer semantics. With the increase
of edges, there will be many semantic units, which can
accurately describe the semantic changes of node i, and
SemE obtains them by the meta-path-based random walk.
Formally, in a temporal HIN, Sm

i which represents the
semantic embedding of node i related to meta-path m can
be formulated as

Sm
i = g({e|v ∈ V m

i }), (1)

where V m
i indicates the set of semantic units related to

meta-path m of node i, v is a semantic unit, and e is its
embedding. g is a function that leverages the semantic units
set related to node i to obtain Sm

i , and we will detail it in
Section 3.3.

Here we show how to obtain semantic units by ran-
dom walk based on meta-path. With a meta-path m =
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Fig. 3. The overall architecture of SemE.

Φv1

Φe1−→ Φv2

Φe2−→ · · ·
Φel−→ Φvl+1

, the transition probability at
step i is defined as follows

p(vi+1|vi,m) =


1

|Ntvi+1
(vi)|

, (vi, vi+1) ∈ E, ϕ(vi+1) = Φvj+1

0, (vi, vi+1) ∈ E, ϕ(vi+1) ̸= Φvj+1

0, (vi, vi+1) /∈ E
(2)

where ϕ(vi) = Φvj , Ntvi+1
(vi) indicates the neighbors of

node vi, and their type is Φvj+1
.

Nonetheless, generating all semantic units of a temporal
HIN will take a lot of time and space. To solve this problem,
SemE adopts a sampling strategy. Simply, SemE samples a
temporal HIN K times, and each time, n semantic units with
length l are generated for a node. Note that there should
not be the same node in a semantic unit. For example, the
information of semantic unit a1p1a1 is already contained in
the a1p1a2. By deleting these duplicate semantics, we can
obtain more semantic information with less sampling.

3.2 Semantic Network Construction

After sampling, we construct the semantic network of spe-
cific meta-path by semantic units. If any two semantic units
include the same nodes, they will establish a connection. For
example, a1p1a2 and a1p2a3 contain the same author node
a1, and we build a correlation between them. Therefore,
the relationship between any two semantic units can be
expressed as

W(vmi , um
j ) =

{
1, i = j

0, i ̸= j
(3)

where vmi ∈ V m
i and um

j ∈ V m
j . In this way, all semantic

units in V m
i connect with each other, forming a fully con-

nected network called the community of node i.
Obviously, the community of node i will result in a large

amount of memory and time overhead. Fortunately, the
star topology of Ethernet inspires us. In real-world commu-
nities, residential neighborhoods use switches to transmit
information to each user. Therefore, we add a central node
to the community of node i as a switch. As a result, all
nodes in the community are no longer connected to each
other but to the central node. Therefore, we optimize the
semantic mesh network to the semantic star network, which
is demonstrated in Figure 4, and Equation (3) is rewritten as

W(vmi , cmj ) =

{
1, i = j

0, i ̸= j
(4)

where cmj is the central node to the community of node
j. This method significantly simplifies the structure of the
network and reduces the cost. Note that a temporal HIN has
many meta-paths, so there will be many semantic networks.

Furthermore, all semantic units are related to meta-path
m and express the same kind of semantics for a semantic
network. In addition, the central node is only the hub con-
necting semantic units and does not contain any semantics.
Therefore, we regard the semantic network as a particular
homogeneous network and embed semantic units with an
unsupervised or self-supervised embedding method , such
as ProNE [8]. Relying on well-established embedding meth-
ods on homogeneous networks, we are able to learn the
embedding of nodes in the semantic network quickly and
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(a)Semantic mesh network (b) Semantic star network
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Fig. 4. Semantic network construction. Inspired by Ethernet, we trans-
form a semantic mesh network into a semantic star network.

efficiently. In addition, in Section 4.8, we test the influence
of different embedding methods for homogeneous networks
on the performance of SemE.

3.3 Semantic Evolution Modeling
Semantic information is composed of multiple semantic
unit types with different feature spaces. Therefore, before
modeling the semantic evolution patterns, we first map
them to the same feature space using the projection matrix
M for a specific semantic type to facilitate the merging of
different types of semantics later. The details are as follows:

Hm = MmEm, (5)

where Em represents the embedding of all semantic units
with meta-path m.

With the development of time, the number of edges
of the connecting node i will change, and many semantic
units will appear, which will affect the semantics of node
i. Therefore, we add these semantic units to the set V m

i . In
addition, the earlier the semantic units occur, the less impact
it has on the present. Therefore, we model the semantic
evolution of nodes by the Hawkes process [11] and attention
mechanism [12]. Specifically, Equation (1) is rewritten as

Sm
i = σ

 ∑
vj∈V m

i ∪cmi

αi,jhjµ(t− ti)

 , (6)

αi,j =
exp(LeakyReLU(aT [Whi||Whj ]))∑

vk∈V m
i ∪cmi

exp(LeakyReLU(aT [Whi||Whk]))
,

(7)
where hi is the embedding of central node cmi , and µ(t− tj)
is an excitation function that decays with time. Thus, it
represents the influence of semantic units before time t. In
SemE, we use the embedding of the central node as the
basic semantics of node i, because the central node is the
neighbor of all semantic units of node i. It contains the
shared information of these semantic units, and no matter
how the semantics of node i change, this information should
be included.

For excitation function µ(t − tj), its standard form is
exponential decay so that we can express it as

µ(t− tj) = e−β(t−tj), (8)

where β is a trainable parameter and is related to nodes [13].
However, the impact of historical events on the present

should be divided into two parts. On the one hand, the

impact of events at different times is different. On the other
hand, the impact of different events is different. Therefore,
we define β as

β = θ1 + θ2, (9)

where θ1 is related to nodes and θ2 is only related to time.

3.4 HIN Embedding
Although we obtain Sm which represents the embedding
of all nodes based on meta-path m, there are many meta-
paths in the temporal HIN. So we need to repeat the above
steps with different meta-paths, and get a set of node
embedding S = {Smi |mi ∈ M}, where M is a set of meta-
paths. What is more, the node in the temporal HIN should
contain semantic information, temporal information, and
structure information. Therefore, the embedding of nodes
in the temporal HIN can be expressed as

H =
∑

Hi∈S∪Hst

γiHi, (10)

where Hst represents the structure embedding of nodes
with the projection matrix Mst, which is obtained on the
topology of the temporal HIN by using methods such as
ProNE.

The Temporal HIN contains multiple semantic informa-
tion, and their contribution to different downstream tasks
is different. Therefore, to learn the importance of different
meta-paths and the structure, the importance of each is
calculated as:

wi =
1

|V |
∑

hi∈Hi

aT tanh(Whi + b), (11)

where a is a trainable vector, W is the weight matrix, and b
is the bias. Then, γi denotes the weight of meta-paths and
structure, and we can obtain it by normalizing wi with the
softmax function.

γi =
exp(wi)∑|M |+1

j=1 exp(wj)
. (12)

Finally, H will adapt to different downstream tasks by
an mlp. In addition, SemE is an end-to-end model, so that
we use cross-entropy as the loss function and optimize all
trainable parameters by Adaptive Moment Estimation (Adam).

3.5 Complexity Analysis
Our model can be divided into three parts. Suppose only
one meta-path m is considered. In the first part, SemE
samples K ×n times to generate semantic units with length
ℓ = (|m| − 1) ∗ q+1, and its time complexity is O(Knl|V |).
For the second part, the time complexity of constructing the
semantic network by star topology is also O(Knl|V |). Then,
we can regard the whole evolutionary modeling process
as a GAT [12] layer, which propagates the information of
semantic units in the community of node i and updates the
representation of the node. There are Kn|V | + |V | nodes
and Knl|V | edges in a star semantic network. Therefore, the
time complexity of modeling semantic evolution patterns is
O((Kn|V |+ |V |)d2h+Knl|V |dh), where dh is the dimension
of the hidden layer. Finally, the overall time complexity is
O((Kn|V |+ |V |)d2h +Knl|V |(dh + 2)).
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TABLE 1
Statistics of three real-world datasets.

Dataset Node(#Node) Edge(#Edge) TS* Meta-path

Aminer
A(10206) A-P(41687) APA
P(10457) P-P(41678) 10 APCPA
C(2584) P-C(10457) APPA

DBLP
A(22662) A-P(122984) APA
P(22670) P-P(122961) 15 APCPA
C(2938) P-C(22670) APPA

Yelp
S(5)

U(24586)
B(800)

B-S(28000)
U-B(28000) 15

UBU
UBSBU

BUB
BSB

* TS is short for Timestamp.

4 EXPERIMENTS AND ANALYSIS

4.1 Experimental Setup

Datasets and Tasks. We evaluate SemE and other baselines
on three popular datasets, Aminer [14], DBLP1, and Yelp2,
whose details are listed in Table 1.
• Aminer is an academic network that consists of three

types of nodes: Authors, Papers, and Conferences. For
the node classification task, authors are divided into three
classes, while for the link prediction task and temporal
link prediction task, it is to predict whether the two
authors are collaborators.

• DBLP is an academic network related to the field of
computer science, and it contains the same types of nodes
as Aminer. For the node classification task, authors are
divided into four classes, while for the link prediction
task and temporal link prediction task, we have the same
settings with Aminer.

• Yelp is a review network that consists of three types of
nodes: Users, Businesses, and Stars. For the node classi-
fication, the task is to predict the business label, so we
present the meta-paths, including BSB and BUB. While
for the link prediction and temporal link prediction, the
task is to predict whether the two users are friends, so we
are interested in meta-paths UBU and UBSBU .

Baselines. We compare our proposed SemE with 18 base-
lines, including 7 homogeneous network methods and 11
HIN models, which are demonstrated in Table 2. On the
datasets mentioned above, we used the node classification
and link prediction tasks to evaluate the performance of all
models except HPGE, TGT and KHGT. For the temporal
link prediction task, we evaluated the performance of all
models. In addition, for all baseline models, we use the code
provided by their authors.
Parameter Settings. We evaluate SemE and other baselines
on a server with Intel Xeon CPU E5-2680, Tesla V100 GPUs,
and 250GB of Memory. The experimental environment of
software is Ubuntu 18.04 with CUDA 10.2. In the experi-
ment, we use ProNE [8] to initialize embedding for semantic
units and structural information of nodes because it runs
faster and performs better than other unsupervised or self-
supervised embedding methods on the homogeneous net-

1. https://dblp.org
2. https://www.yelp.com/dataset

TABLE 2
Statistics of 12 baselines.

Homogeneous Heterogeneous

Deepwalk [15] Metapath2Vec [16]
Static LINE [17] StHNE [18]

Node2Vec [19] MAGNN [20] **

ProNE [8] HGT [21] **

Temporal
DySAT [22]
HTNE [23]
MTNE [13]

DHNE [5]
DyHNE [18]

HDGNN [24] **

THINE [6]
HPGE [7]
TGT [25] **

KHGT [26] **

** indicates deep methods.

work, which we will prove in Section 4.8. We train SemE
with the learning rate of 0.0001 and the Adam optimizer for
all tasks. In addition, we set the epoch as 100, the weight
decay of the Adam is set as 10e-5, and the dropout is 0.5.

In the node classification experiments, for Aminer and
DBLP, we set sampling times K as 8, sampling number n is
8, and the semantic information number q as 1. In contrast,
sampling times K , sampling number n, and the semantic
information number q are set to 8, 64, 1 for Yelp. In addition,
for all datasets, the batch size is set to 256.

In the link prediction experiments, for all datasets, the
batch size is 64, sampling times K is 8, sampling number n
is 8, and the semantic information number q is 1. In addition,
we set the same parameters as link prediction experiments
in temporal link prediction experiments.

For all non-end-to-end models, we set embedding di-
mension d as 100 and use a logistic regression model to
predict the results. In contrast, SemE and other end-to-end
baselines use the downstream tasks to optimize and directly
output the prediction results. For supervised methods, we
use one-hot vectors as the initial features of nodes. The
meta-paths are shown in Tabel 1. For all baselines, the
remaining parameters use the default settings. In addition,
we take the best performance on the test set as a result for all
models. In addition, to ensure the reliability of experiments,
we repeat each task ten times. After that, the average value
is taken as the final result.

In particular, node classification and link prediction are
not temporal tasks, so we set µ(t − ti) = 1 for all semantic
units in SemE.

4.2 Node Classification
In the node classification experiment, for Aminer and DBLP,
the task is to predict the label of authors. While for Yelp,
we predict the label of businesses. For all datasets, we
set the dimension of the hidden layer as 256. We report
test accuracy (macro-F1 and micro-F1) for all datasets. In
addition, we set the ratio of the training set as 60%, 80%,
and the others as the test set. The final experiment results
are demonstrated in Table 3.

From Table 3, we can see that on the non-temporal task,
Deepwalk outperforms the vast majority of baselines. This
is because classic methods are highly robust and demon-
strate outstanding performance across different datasets and
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downstream tasks. In contrast, many baseline models have
poorer robustness and exhibit significant performance dif-
ferences depending on the dataset or downstream task. We
can also observe similar results in two other tasks. In addi-
tion, we can find that the results of SemE on all datasets are
better than other methods. On the one hand, it shows that
semantic units can effectively capture semantic information
in the HIN. Using semantic units, our model SemE can effec-
tively describe the properties of nodes. On the other hand,
the star semantic network can effectively describe the rela-
tionship between semantic units. However, the performance
of SemE is only marginally improved compared to the latest
baseline. To prove that the improvement is not accidental,
we report p-values on all datasets. The results prove that
SemE is significantly better than all baseline models. Since
THINE include unsupervised tasks for describing the evo-
lution of the network structure, they still consider temporal
information in the network for non-temporal tasks. There-
fore, they perform better than MAGNN, StHNE and HGT,
which only consider heterogeneous information. SemE does
not consider temporal information in non-temporal tasks, so
the performance improvement is slight.

4.3 Link Prediction
Link prediction is essentially a binary classification of edges.
Therefore, we set the label of the actual edge as 1, while the
label of the non-existent edge is 0. The more similar nodes
are, the more likely they are to link in the network. The
similarity between nodes is used to predict the existence
of edges, so we define the embedding of edges as ei,j =
|ei − ej |, where ei and ej are the embeddings of nodes i
and j, respectively. For Aminer and DBLP, the task here is
to predict whether the two authors are collaborators. This
information is hidden in meta-path APA, so we randomly
hide 25% A-P edges and use the remaining edges to predict
the co-author relationship. While for Yelp, we hide 25% U-
B edges randomly and predict whether the two users are
friends. In addition, the number of positive and negative
samples for all datasets is 25000, and we randomly take 20%
of them as the training set.

From the final experiment results listed in Table 4, we can
first see that on the link prediction task, temporal models
generally perform well, which indicates that simulating the
structure evolution helps predict the structural dynamics of
the network. Secondly, based on the experimental results
and p-value, we can find that the performance of SemE
is significantly better than the baseline model. Especially
on the Yelp dataset, SemE can effectively predict the link
relationship between users. It shows that semantic units
can accurately describe the attributes of nodes and effec-
tively capture the relationship between nodes. In addition,
considering the relationship between semantic units can
effectively capture the deeper semantic information, which
is helpful for the final performance of the model. Finally, the
performance improvement of SemE on the link prediction
task is also modest for the same reason as analyzed in the
node classification experiments.

4.4 Temporal Link Prediction
In the temporal link prediction experiment, we also ran-
domly hide 25% edges, just like link prediction. For Aminer,

the task is to predict whether the two authors will cooperate
in 1988 by the information before 1988. For DBLP, we use
the information before 2004 to predict whether the two
authors will cooperate in 2004. While for Yelp, the task here
is to predict whether the two users are friends in 2020. In
addition, the number of positive samples for all datasets is
25000, while the number of negative samples is 12500, and
we randomly take 20% of them as the training set.

Firstly, from the final experiment results listed in Table
5, the temporal methods generally perform better, which
indicates that temporal information helps predict link dy-
namics in the network. Secondly, the performance of THINE
and HPGE is better than MTNE, which indicates that the
measures (meta-path and relational aggregation) taken by
both for HINs are effective in capturing semantic infor-
mation. Thirdly, we can find that on the three datasets,
SemE performs better than other baselines. On the one
hand, this illustrates that SemE can more effectively capture
the semantic information in the network by taking into
account the semantic units and their relationships. Addi-
tionally, SemE is capable of accurately capturing temporal
information by describing semantic evolution. On the other
hand, this suggests that in HINs, semantic evolution holds
more significance than structural evolution, and modeling
semantic evolution can better capture semantic information
and temporal dynamics. Finally, we can see that HGT,
TGT and KHGT perform worse than SemE because the
characteristics of the dataset prevent them from perform-
ing optimally. On the one hand, HGT only uses temporal
information as a feature of nodes, but the author nodes do
not have exact temporal information. On the other hand, for
recommendation methods, the dataset they deal with is a
bipartite graph containing multiple relationships. However,
in heterogeneous graphs, many relations are not directly
related to the target node, which causes these methods to
lose information by not covering all the relations.

4.5 Parameter Analysis

We study how parameters influence the performance of
the proposed SemE in this part. We evaluate sample times
K , sample number n, and semantic information number q.
Because we obtain similar conclusions on all tasks of which
the temporal link prediction is the most important, we only
show the impact of the parameters on it. We report the AUC,
F1, and accuracy for temporal link prediction on all datasets
with the training set ratio as 20%.

Sample times K . When K changes, n and q are fixed
to 8 and 1. The final experiment results are listed in Figure
5(a). From it, we can see that with the increase of sampling
times K , the performance of SemE is improved since SemE
can sample more semantic units from the temporal HIN.
Moreover, it shows that the more semantic units, the more
accurate the description of node attributes. In addition,
the increasing trend of all metrics is gradually decreasing
because the number of semantic units in the network is
limited. Therefore, we cannot get better results by increasing
the parameters indefinitely.

Sample number n. When n changes, K and q are fixed
to 8 and 1, and the final experiment results are demonstrated
in the Figure 5(b). From it, we can see that with the increase
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TABLE 3
Performance on node classification task. Bolded font indicates the best result, underlined indicates the suboptimal result.

Methods
Aminer DBLP Yelp

micro-F1 macro-F1 micro-F1 macro-F1 micro-F1 macro-F1
60% / 80% 60% / 80% 60% / 80% 60% / 80% 60% / 80% 60% / 80%

Deepwalk 0.4450 / 0.4467 0.4448 / 0.4473 0.3425 / 0.3600 0.3421 / 0.3549 0.6438 / 0.6593 0.6437 / 0.6591
LINE 0.3633 / 0.3833 0.3496 / 0.3621 0.2975 / 0.3038 0.2973 / 0.3036 0.5643 / 0.6175 0.5530 / 0.5973

Node2Vec 0.4484 / 0.4473 0.4501 / 0.4492 0.3462 / 0.3595 0.3483 / 0.3567 0.6396 / 0.6514 0.6372 / 0.6499
ProNE 0.4613 / 0.4637 0.4591 / 0.4665 0.3596 / 0.3723 0.3611 / 0.3713 0.6718 / 0.6787 0.6696 / 0.6801

DySAT 0.4300 / 0.4266 0.4500 / 0.4474 0.3150 / 0.3225 0.3126 / 0.3230 0.6844 / 0.6999 0.6837 / 0.6970
HTNE 0.3750 / 0.4083 0.3581 / 0.3908 0.3075 / 0.3263 0.3073 / 0.3268 0.6150 / 0.6500 0.6122 / 0.6475
MTNE 0.4133 / 0.4508 0.4051 / 0.4567 0.3125 / 0.3388 0.3104 / 0.3389 0.6500 / 0.6875 0.6499 / 0.6867

Metapath2vec 0.3817 / 0.4033 0.3812 / 0.4013 0.3050 / 0.3450 0.3047 / 0.3428 0.5087 / 0.6088 0.4951 / 0.5980
StHNE 0.3500 / 0.4000 0.2550 / 0.3422 0.2200 / 0.1925 0.1903 / 0.1844 0.6781 / 0.6625 0.6704 / 0.6599

MAGNN 0.3667 / 0.3967 0.3618 / 0.3961 0.2450 / 0.2525 0.2385 / 0.2543 0.4656 / 0.4875 0.4654 / 0.4871
HGT 0.4777 / 0.4802 0.4753 / 0.4811 0.3861 / 0.3899 0.3876 / 0.3921 0.6895 / 0.7033 0.6931 / 0.7030

DHNE 0.4362 / 0.3964 0.4119 / 0.3597 0.3750 / 0.3975 0.3690 / 0.3835 0.6094 / 0.7000 0.6080 / 0.6998
DyHNE 0.3633 / 0.4200 0.3530 / 0.4131 0.2213 / 0.1950 0.906 / 0.899 0.6844 / 0.6813 0.6774 / 0.6776
HDGNN 0.4167 / 0.4483 0.4157 / 0.4461 0.3725 / 0.3750 0.3689 / 0.3685 0.6218 / 0.6187 0.6210 / 0.6180
THINE 0.4833 / 0.4867 0.4803 / 0.4858 0.3850 / 0.3989 0.3743 / 0.3964 0.7037 / 0.7125 0.7023 / 0.7124
SemE 0.4883 / 0.5020 0.4864 / 0.4973 0.3955 / 0.4085 0.3935 / 0.4029 0.7121 / 0.7213 0.7105 / 0.7198

p 1.9e−3 / 7.6e−4 3.0e−3 / 1.7e−5 1.4e−3 / 2.1e−2 1.3e−2 / 4.7e−2 1.1e−2 / 5.1e−3 3.4e−2 / 3.6e−4

TABLE 4
Performance on link prediction task.

Methods Aminer DBLP Yelp

auc f1 acc auc f1 acc auc f1 acc

Deepwalk 77.07% 71.19% 71.09% 85.59% 81.28% 81.28% 50.32% 63.28% 52.78%
LINE 68.49% 64.79% 63.54% 75.11% 71.24% 70.09% 58.30% 57.56% 55.57%

Node2Vec 79.11% 75.38% 74.92% 83.54% 80.96% 80.08% 60.31% 59.17% 59.27%
ProNe 82.43% 80.09% 79.86% 87.44% 82.65% 81.97% 72.79% 67.36% 63.03%

DySAT 80.25% 67.91% 66.14% 82.16% 75.61% 75.03% 53.67% 54.27% 52.88%
HTNE 76.53% 73.18% 72.55% 90.77% 83.16% 82.87% 65.27% 64.77% 60.65%
MTNE 82.78% 75.23% 74.72% 94.06% 86.74% 86.61% 67.75% 65.34% 61.69%

Metapath2vec 70.20% 65.43% 64.83% 79.17% 74.02% 73.17% 51.18% 46.99% 51.03%
StHNE 79.19% 73.66% 69.61% 81.58% 76.02% 72.47% 73.60% 70.30% 63.50%

MAGNN 66.34% 63.90% 62.83% 67.80% 70.02% 63.62% 73.29% 69.19% 60.88%
HGT 87.51% 85.39% 84.96% 92.13% 90.89% 90.27% 80.65% 77.37% 76.86%

DHNE 63.86% 76.89% 64.97% 75.46% 70.82% 69.27% 50.41% 50.52% 50.53%
DyHNE 72.06% 74.25% 74.25% 82.77% 76.54% 72.97% 75.58% 71.33% 66.67%
HDGNN 89.80% 82.33% 82.09% 92.03% 84.37% 84.17% 76.87% 71.86% 71.04%
THINE 91.16% 88.08% 88.25% 94.65% 90.66% 90.71% 79.33% 72.36% 72.51%
SemE 92.08% 89.27% 89.43% 96.65% 91.25% 91.39% 88.23% 78.58% 78.33%

p 6.67e−3 2.45e−3 8.05e−5 3.11e−6 4.71e−2 1.16e−2 4.90e−11 1.05e−3 2.94e−4

of sampling number n, the performance of SemE is also
improved for the same reason. In addition, the increasing
trend of all metrics is gradually decreasing.

Semantic information number q. The hyper-parameter
l is controlled by the hyper-parameter q, and they have
the same impact on the model performance. Therefore, we
only present the results of q here. When q changes, K and
n are both fixed to be 8, and the final experiment results
are demonstrated in the Figure 5(c). From it, we can see
that with the increase of walk length q, the performance
of SemE is decreased. It means that the more extended
semantic units, the less accurate the description of node
attributes is. That is, too-long semantic units will contain
noise. Therefore, the optimal length of semantic units is
1 because such semantic units only describe the slightest

semantic events based on meta-paths. Therefore, we can use
them to to describe the semantic evolution pattern of nodes
accurately.

4.6 Ablation Study

In this experiment, we compare SemE with its three variants
to demonstrate the effectiveness of each of our proposed
components. The ”Structure” indicates using the structure
information Hst of the network. The ”Semantic” represents
using semantic units to capture semantic information, and
the ”Temporal” denotes capturing temporal information by
simulating the temporal dynamics of semantic units. Since
the temporal information is only available based on the
semantic units, we cannot prove the effectiveness of the
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TABLE 5
Performance on temporal link prediction task.

Methods Aminer DBLP Yelp

auc f1 acc auc f1 acc auc f1 acc

Deepwalk 81.60% 80.77% 77.95% 81.50% 80.39% 77.57% 75.08% 66.33% 70.67%
LINE 78.12% 68.34% 71.52% 76.56% 62.90% 69.60% 88.05% 81.08% 79.78%

Node2Vec 80.38% 78.19% 78.64% 83.62% 81.29% 81.21% 80.58% 79.37% 80.46%
ProNe 83.16% 82.54% 80.63% 85.59% 85.11% 84.07% 91.82% 89.97% 90.08%

DySAT 80.94% 78.82% 78.01% 82.05% 79.81% 78.90% 91.09% 90.47% 88.52%
HTNE 80.34% 73.63% 72.81% 85.08% 82.02% 82.20% 89.54% 87.23% 86.19%
MTNE 81.21% 75.34% 74.23% 84.63% 81.80% 80.21% 91.49% 88.41% 87.13%

Metapath2vec 77.64% 71.75% 71.46% 81.07% 78.12% 78.40% 85.06% 84.31% 84.48%
StHNE 76.54% 76.13% 71.53% 75.19% 74.72% 72.06% 90.06% 82.37% 77.39%

MAGNN 72.41% 60.05% 66.23% 74.19% 65.08% 64.14% 80.98% 78.67% 77.09%
HGT 87.26% 85.84% 86.43% 90.91% 89.64% 89.02% 96.81% 92.56% 92.13%

DHNE 81.78% 74.42% 76.27% 82.09% 63.78% 80.12% 93.63% 89.98% 90.32%
DyHNE 77.16% 77.01% 71.70% 80.07% 78.52% 72.80% 92.09% 87.03% 85.58%
HDGNN 81.09% 78.08% 78.60% 86.76% 83.33% 82.17% 93.92% 89.07% 88.51%
THINE 83.61% 80.21% 79.72% 87.09% 84.69% 83.67% 95.20% 90.33% 90.55%
HPGE 84.92% 81.67% 81.28% 88.85% 87.33% 85.96% 96.37% 91.03% 90.19%
TGT 88.63% 86.06% 86.72% 92.83% 92.01% 91.54% 96.45% 93.96% 93.32%

KHGT 90.35% 87.26% 87.98% 93.17% 92.61% 92.09% 96.13% 93.68% 93.43%
SemE 91.76% 90.96% 90.61% 95.01% 95.55% 93.89% 97.55% 96.77% 96.34%

p 2.06e−6 3.99e−9 1.09e−6 2.96e−5 9.60e−7 1.27e−5 6.99e−5 4.97e−6 7.67e−8
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Fig. 5. Parameter analysis.

temporal components individually, so we illustrate their
effectiveness by comparing experimental results.

We finally obtain similar results on all datasets, so we
take Aminer as an example for analysis, and results are
listed in Table 6. By comparing the data of line 2 and
line 3 in table 6, we can find that semantic information
is crucial for the temporal HIN, which will significantly
affect the performance of the model SemE in downstream
tasks. Semantic units based on the meta-path can effectively
capture the semantic information in the network, and the
star semantic network can effectively describe the relation-
ship between semantic units. Besides, by comparing line 3
and line 5, we can see that in the temporal HIN, temporal
information has a significant impact on the performance
of the model. Our proposed attention-Hawkes process can
effectively describe the semantic evolution pattern of nodes.
Finally, by comparing line 4 and line 5, we will find that
structure information is also indispensable in the temporal
HIN. Using the embedding method on static homogeneous
networks can effectively capture the structure information
of the network. To sum up, our model SemE can efficiently
capture the structure information, semantic information,
and temporal information in the network. Hence, each com-
ponent in SemE is necessary, and they ensure that SemE

performs well in the task of temporal link prediction.

4.7 Performance and Effciency on the larger dataset

In this section, we demonstrate the efficiency and perfor-
mance of SemE on a larger and more complex dataset
Freebase [27]. Freebase contains node types Book(B),
Film(F), Music(M), Sports(S), People(P), Location(L), Orga-
nization(O), Business(B̂). The task is to predict the cate-
gories of books. The specific information of Freebase, the 8
metapaths we used and the experimental results are shown
in Table 7. Moreover, SemE-x is a method that represents
SemE only considers the top x meta-paths.

From the experimental results, we can see that when
there are fewer meta-paths, the efficiency of SemE is ac-
ceptable and its performance is comparable to the baseline
model. While as the number of meta-paths increases, the
time overhead of SemE increases rapidly. However, we can
see that more meta-paths do not necessarily mean better
performance. The reason for this might be that some meta-
paths do not provide any gain for downstream tasks and
may even introduce noise. Therefore, what we need is just
a small number of carefully selected meta-paths, which will
not consume a lot of time and memory.
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TABLE 6
Comparative results of SemE with its three variants.

Data- Stru- Sema- Temp- auc f1 acc
set cture ntic oral

! % % 81.90% 79.57% 79.15%

Ami- ! ! % 88.16% 87.71% 86.33%

ner % ! ! 90.31% 89.94% 89.72%

! ! ! 91.76% 90.96% 90.61%

p - 6.9e−5 1.9e−5 4.8e−4

TABLE 7
Node Classification on Freebase.

Freebase #node #ntype #edge #etype

180,098 8 2,115,376 64

Meta-path BB,BFB,BMB,BSB,BPB,BLB,BOB,BB̂B

Method Memory Time macro-F1 micro-F1

Simple-HGN 13.7GB 423.8s 46.26% 65.75%
SemE-2 12.8GB 1503.7 48.46% 65.37%
SemE-4 14.2GB 2728.1s 50.61% 65.37%
SemE-6 14.4GB 4066.0s 50.89% 64.15%
SemE-8 14.4GB 5652.4s 50.78% 64.76%

4.8 Initialization with Different Embedding Methods

In this section, we try to study the impact of different
initialization methods on the performance of the SemE.
Therefore, we use different methods to feature semantic
units and compare their performance. In addition, for all
methods, we set the embedding dimension d as 256, and we
report the F1 value of node classification on Aminer. The
final results are listed in Table 8.

It can be seen that initialized by ProNE performs sig-
nificantly better than other methods. Therefore, in other
experiments, we use ProNE by default to initialize embed-
ding for semantic units and structure information of nodes.
On the one hand, the result shows that the star semantic
network can effectively describe the relationship between
semantic units, and more advanced embedding methods
can extract this information more accurately. On the other
hand, it indicates that the performance of SemE is posi-
tively correlated with the effect of the initialized method.
Therefore, with the innovation of the network embedding
method, the performance of our model will be better.

4.9 Relation Sampling or Semantic Sampling?

When generating the semantic network, SemE considers the
impact of the semantic unit. While NARS [28] considers the
influence of relationship and extract relation information
from HINs. Therefore, here we will compare the perfor-
mance of relation sampling and semantic sampling.

For simplicity, we report the results of node classification
on Aminer and link prediction on Yelp. For Aminer, the
relationship set we sample is {{A−P}, {A−P, P−C}, {A−
P, P − P}, {A − P, P − C,P − P}}. While for Yelp, the
relationship set is {{U − B}, {U − B,B − S}}. Because
the temporal information cannot be considered when using

TABLE 8
Experiment results of SemE with different initialization methods.

Methods macro-F1 micro-F1

60% 80% 60% 80%

Deepwalk 46.4% 45.5% 46.5% 47.3%

Node2Vec 46.0% 47.0% 46.8% 47%

LINE 39.5% 43.6% 39.5% 45%

ProNE 48.6% 49.7% 48.8% 50.2%

p 4.47e−7 5.86e−8 3.46e−6 7.24e−7

TABLE 9
Results of relation sampling and semantic sampling.

Task Methods Relation Semantic p
-sampling -sampling

Node
classifi-
cation

macro-F1(60%) 45.85% 48.64% 6.0e−7
micro-F1(60%) 46.11% 48.83% 8.7e−7
macro-F1(80%) 48.24% 49.73% 2.6e−5
micro-F1(80%) 48.33% 50.20% 8.4e−7

Link
prediction

auc 86.45% 88.23% 7.5e−6
f1 77.50% 78.58% 1.6e−4

acc 77.52% 78.33% 6.9e−4

relation sampling in SemE, to ensure the fairness of the ex-
periment, we omit the step of semantic evolution modeling
in SemE for both approaches. For the relationship sampling
model, we use ProNE to generate embedding for each rela-
tion subgraph, then merge these embedding and structure
embedding Hst by the attention mechanism, and train the
downstream tasks with an mlp. While for the SemE, we use
ProNE to generate embedding for semantic units, then we
converge semantic units to learn the embedding of nodes
with the excitation function µ(t − ti) = 1 for all semantic
units. In addition, for all methods, we set the embedding
dimension d of ProNE as 256, and other parameters follow
the default settings. The final results are listed in Table
9. From the experimental results and p-value, we can see
that the performance of semantic sampling is significantly
better than relation sampling, which indicates that semantic
sampling can better preserve the semantics of HINs. This is
because semantic units can accurately describe the attributes
of nodes, while random sampling relationship subgraphs
may bring noise.

4.10 Contructing Semantic networks with different
topologies
In Table 10, we show the effect of mesh and star topologies
on performance, efficiency, and memory overhead of node
classification on Aminer. Except for the topology and sam-
ple times K , other parameters are set to default values.

On the one hand, from the experimental results, we can
see that adding central nodes does not lose information.
On the other hand, the star topology can effectively reduce
the time and memory overhead due to the sparser network
constructed. Furthermore, since constructing a star semantic
network incurs lower cost, we can consider more semantic
units and achieve better performance by setting a larger
sampling times K .
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TABLE 10
Comparative results of SemE with different topologies.

Topology K macro-F1 micro-F1 Time Memory

Mesh 1 46.89% 46.83% 10.87h 170GB

Star 1 46.87% 47.00% 327.12s 2.61GB

Star 8 48.64% 48.83% 2208.65s 8.36GB

p - 1.04e−5 2.03e−5 - -

5 RELATED WORK

Since 2019, more and more attention has been paid to
temporal HINs. As a result, some related works have been
put forward and some reviews [29], [30] have summarized
them. Here we will introduce these HIN embedding meth-
ods in two categories.
1) Snapshot-based methods. Change2vec [31] models the
opening and closing process of shapes (such as triangles)
in the network by meta-path and successfully integrates
heterogeneous information and time information in the em-
bedding. After dividing the network into several snapshots,
DHNE [5] uses historical-current graphs to learn embedding
from the network. DyHNE [18] generates static embeddings
by decomposing the matrix generated by meta-paths on the
earliest network snapshot. Then, based on matrix perturba-
tion theory, it iteratively updates the embeddings on the
remaining network snapshots. DyHAN [4] generates the
embedding of nodes on each snapshot by the hierarchical
attention mechanism and then aggregates the historical em-
bedding of nodes with Time-Level attention.
2) Evolutionary dynamics-based methods. HDGNN [24]
extends heterogeneous GNN by combining time evolution
information and then captures the structure, semantic, and
temporal information of the temporal HIN. HDGAN [32]
captures structural information, semantic information, and
temporal information in the network by three attention
mechanisms, in which temporal attention is based on the
time attenuation effect. DyHINE [33] aggregates neighbor
features by a hierarchical attention mechanism, then uses
temporal random walk and a dynamic operator to capture
dynamic interaction and update node embedding in real-
time, respectively. LIME [34] quickly and efficiently adapts
to a constantly evolving network with lower memory and
time cost by using the recursive neural network (RsNN)
with optimization strategies. HINTS [35] transforms em-
beddings of papers into the parameters of a formal model
to predict citation counts immediately after publication.
THINE [6] and HPGE [7] simulate the evolution of the
temporal HIN by semantic units and the Hawkes process.
Based on these temporal methods, SemE further considers
the deeper semantic information in HINs, improving the
performance of the model. While by simplifying the net-
work structure by the star topology, it reduces time and
memory overhead.

6 CONCLUSION

In this paper, we propose SemE to solve the temporal HIN
embedding problem. By the star topology found in Ethernet,
SemE constructs the sparse semantic to consider the global

interaction between semantic units, which significantly re-
duces the memory and time overhead. Experiments on three
real-world temporal HINs demonstrate that SemE performs
better than competitive counterparts.
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